Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3637-3643    https://doi.org/10.11896/cldb.18080101
  金属与金属基复合材料 |
泡沫铝填充金属薄壁管复合结构的研究进展
杨旭东1, 许佳丽2, 邹田春3, 赵乃勤2, 纵荣荣4
1 中国民航大学中欧航空工程师学院,天津 300300
2 天津大学材料科学与工程学院,天津 300350
3 中国民航大学适航学院,天津 300300
4 天津金力研汽车工程技术有限公司,天津 300392
Advances in the Composite Structure of Aluminum FoamFilled Metal Thin-walled Tube
YANG Xudong1, XU Jiali2, ZOU Tianchun3, ZHAO Naiqin2, ZONG Rongrong4
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300350
3 College of Airworthiness, Civil Aviation University of China, Tianjin 300300
4 Tianjin Jinliyan Automobile Engineering & Technology Co., Ltd., Tianjin 300392
下载:  全 文 ( PDF ) ( 4382KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝由于具有出色的力学、电学、热力学性能而被人们广泛关注和应用。为了拓展泡沫铝的应用领域,研究者在制备高性能的铝基复合泡沫方面付出了大量的努力。研究表明,通过添加不同种类增强体制备复合泡沫的方法虽然可以提高复合泡沫的强度,但是会引起各种不同的问题。例如,硬质陶瓷颗粒(SiC颗粒、Al2O3颗粒等)作为增强体可以提高复合泡沫的抗压强度,但是会增强材料的脆性;纤维和晶须这种二维增强相可以在一定程度上降低增强体带来的脆性,但是仍存在增强体难以均匀分布、处理方法繁琐且界面反应控制较难等问题。因此,无论是泡沫铝还是复合泡沫,都鲜有单独使用的情况,多数情况下是与其他强度较高的部件组合成复合构件使用,例如泡沫铝夹芯板、泡沫铝填充金属薄壁管等复合结构。
    泡沫铝填充金属薄壁管复合结构是将泡沫铝芯材通过多种方式填入薄壁金属管中并实现二者的有效连接而组成的特殊结构。目前实现填充的方法可分为外加填充法与原位制备法。泡沫铝填充金属薄壁管结构不仅具有优异的吸能特性和阻尼性能,还具有一定的韧性和较高的独立承载能力。作为一种新型的复合结构,泡沫铝填充金属薄壁管在减震吸能、吸声降噪等方面的潜在优势极其引人关注。尤其是泡沫铝填充金属薄壁管复合结构在汽车制造业领域具有的巨大应用潜力和广阔应用前景引起了研究者们的重视。相较于传统的减震吸能结构,泡沫铝填充金属薄壁管在汽车制造业领域中的应用具有三大优势:(1)在不削减车身强度的情况下极大减轻车身的质量,减少汽车的油耗及尾气排放;(2)在受到撞击时依靠自身塑性变形吸收绝大部分碰撞能量并及时将冲击分散到车身主体上,避免局部集中变形过大对车内乘客造成伤害,充分保证车内人员的人身安全;(3)回弹变形很小,可以有效避免事故中人体受到二次伤害。目前复合结构最为常见的应用是作为汽车的保险杠、副车架、前纵梁等防撞吸能部件,在降低生产成本的同时也提高了汽车的安全系数。
    本文介绍了泡沫铝填充金属管复合结构的主要制备方法和性能特点,阐述了国内外对该种复合结构的研究现状,并对其未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旭东
许佳丽
邹田春
赵乃勤
纵荣荣
关键词:  泡沫铝  薄壁管  复合结构  压缩性能  吸能性能    
Abstract: Aluminum foam has been widely used due to its excellent mechanical, electrical and thermodynamic properties. In order to expand the application, researchers have put a lot of effort into the preparation of high-performance composite aluminum foam. Lots of studies have shown that the method of preparing composite foam by adding different kinds of reinforcements can improve the strength of the composite foam, but it will cause various problems. For example, hard ceramic particles (SiC particles, Al2O3 particles and so on) can improve the compressive strength, but it will cause the problem of brittleness; the two-dimensional reinforcement (such as fiber and whisker) can reduce the brittleness, but there are still many difficulties in uniform distribution and the treatment of reinforcement. Besides that the method is cumbersome and the interface reaction is difficult to control. Therefore, whether aluminum foams or composite foams are rarely used alone. In most cases, aluminum foam is combined with other high-strength components, such as aluminum foam sandwich panels and aluminum foam filled thin-walled metal tubes.
    The aluminum foam filled thin-walled metal tube composite structure is a special structure that aluminum foam core fills into a thin-walled metal tube through various ways and achieve an effective connection. At present, the met-hod of achieving filling can be divided into external filling method and in-situ preparation method. The aluminum foam filled thin-walled tube structure not only has excellent energy absorption and damping properties, but also has certain toughness and high independent load-carrying capacity. As a new type of composite structure, aluminum foam filled thin-walled metal tube has great potential in shock absorption, noise absorption and reduction. In particular, the aluminum foam filled thin-walled metal tube composite structure has great potential practical value and broad application prospects in the automobile manufacturing industry, which has attracted the attention of researchers. Compared with the traditional shock absorbing structure, the aluminum foam filled thin-walled metal tube has three obvious advantages in the automobile manufacturing industry: (i) greatly reducing the weight of the vehicle body, reducing the fuel consumption and exhaust emissions of the automobile without reducing the strength of the vehicle body; (ii) the structure relies on its own plastic deformation can absorb most of the collision energy and disperse the impact on the body of the vehicle to avoid causing excessive local deformation, so that it can fully guarantee the safety of passengers; (iii) the rebound deformation of the structure is low, which can effectively avoid the secondary injury of the human in the accident. At present, the most common composite structure application is used as bumpers, sub-frames, front longitudinal beams and other energy-absorbing components of automobiles, which reduces the production cost and improves the safety factor of automobiles.
    This paper introduces the main preparation methods and performance characteristics of the aluminum foam filled metal thin-walled tube compo-site structure, describes the research status of the composite structure at home and abroad and forecasts its future research direction.
Key words:  aluminum foam    thin-walled tube    composite structure    compression properties    energy absorption properties
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TG146.2  
基金资助: 天津市教委科研计划项目(2018KJ255)
作者简介:  杨旭东,中国民航大学副教授、硕士研究生导师。2012年6月博士毕业于天津大学材料学院,2015—2016年法国航空航天大学(ISAE)访问学者。天津市“131”创新型人才培养工程第三层次人选。主要从事泡沫铝及复合材料的研究工作。近年来,以第一或通讯作者在Composites Part A, Materials Science and Engineering A等SCI期刊发表学术论文十余篇。
    许佳丽,2013年6月毕业于天津大学,获得学士学位。现为天津大学先进金属材料研究所硕士研究生,在赵乃勤教授的指导下进行研究。目前主要研究领域为泡沫铝及复合材料。
    赵乃勤,天津大学材料科学与工程学院金属材料系教授、博士研究生导师。国家高层次人才特殊支持计划(万人计划,教学名师),全国三八红旗手,国务院特殊津贴专家。2000年,国家公派访问学者,在美国伊利诺斯理工学院从事铝基复合材料的制备与性能研究。2014年,国家公派高级研究学者,在美国范德堡大学从事纳米材料电学与热学性能研究。主要从事碳纳米复合材料合成及其在锂离子电池、超级电容器中的应用研究以及金属基复合材料的制备、表征和性能研究。最近5年以第一或通讯作者身份在ACS NanoCarbonMaterials LettersMaterials Science and Engineering A等SCI学术期刊发表研究论文20余篇。出版了《合金固态相变》《原位合成碳纳米相增强金属基复合材料》等学术专著。曾获国家教学成果二等奖和天津市自然科学奖等奖励。
引用本文:    
杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
YANG Xudong, XU Jiali, ZOU Tianchun, ZHAO Naiqin, ZONG Rongrong. Advances in the Composite Structure of Aluminum FoamFilled Metal Thin-walled Tube. Materials Reports, 2019, 33(21): 3637-3643.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080101  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3637
1 Yang K M,Yang X D,Liu E Z, et al.Materials Science & Engineering A,2018,729, 487.
2 Yang X D,Yang K M,Wang J W, et al.Materials Science & Engineering A,2017,19(12), 1.
3 Yang X D,Liu E Z,Shi C S, et al.Journal of Alloys and Compounds,2013,563, 216.
4 An Y,Yang S,Wu H,et al.Materials & Design,2017,134, 44.
5 Zhang Z,Ding J,Xia X,et al.Materials & Design,2015,88, 359.
6 Du Y,Li A B,Zhang X X,et al.Materials Letters,2015,148, 79.
7 Yang K M,Yang X D,Liu E Z, et al.Materials Science & Engineering A,2017,690, 294.
8 Mu Y,Zu G,Cao Z, et al.Scripta Materialia,2013,68, 459.
9 Zhang Z,Xia X,Zhao W.Materials Science,2014,20(4), 424.
10 An Y,Yang S,Wu H et al.Materials and Design,2017,134, 44.
11 Hall I W,Guden M,Yu C J,et al.Scripta Materialia,2000,43(6), 515.
12 Andrews E W,Gioux G,Onck P,et al.International Journal of Mechanical Science,2000,43(3), 701.
13 Rossi A,Fawaz Z,Behdinan K.Thin-walled Structures,2005,43(10), 1646.
14 Yamashita M,Gotoh M,Sawairi Y.Journal of Materials ProeessingTeehno-logy,2003,140(1-3), 59.
15 Kumaraswamidhas L A,Rajak D K,Das S,et al.Journal of Materials Engineering and Performance,2016,25(8), 3430.
16 Gan N,Feng Y,Hang F,et al.Composite Structure,2016,157, 303.
17 Tu Y Q,Wang G Y.Journal of Materials Civil Engineering,2010,22(4), 397.
18 Kavi H,Toksoy A K,Guden M.Materials & Design,2006,27(4), 263.
19 Hanssen A G,Langseth M,Hopperstad O S.International Journal of Impact Engineering,2000,24(5), 475.
20 Zarei H R,Kroeger M.International Journal of Impact Engineering,2008,35(6), 521.
21 Hanssen A G,Langseth M,Hopperstad O S.International Journal of Impact Engineering,2000,24(4), 347.
22 Seitzberger M,Rammerstorfer F G,Gradinger R,et al.International Journal of Solids and Structures,2000,37(30), 4125.
23 Li Z B,Yu J L,Guo L W.International Journal of Mechanical Sciences,2012,1(54), 48.
24 Hu D,Wang Y,Song B,et al.International Journal of Crashworthiness,2017,77, 1.
25 Duarte I,Krstulovic-Opara L,Vesenjak M.Composite Structures,2015,121, 154.
26 Zhang C J,Feng Y,Zhang X B.Transaction of Nonferrous Metals Society of China,2010,20(8), 1380.
27 Nabavi A,Vahdati K.Surface and Interface Analysis,2010,42, 275.
28 Baumeister J,Weise J,Hirtz E,et al.Procedia Materials Science,2014,4, 317.
29 Stoebener K,Baumeister J,Rausch G,et al.High Temperature Materials and Processes,2007,26(4), 231.
30 Zare J,Manesh H D.Materials & Design,2011,32(3), 1325.
31 Yoshihiko H,Otazawa S,Utsunomiya T.Composite Structures,2018,183, 416.
32 Lucio B,Edoardo P,Nunzio R.Journal of Materials Science,2010,45, 1514.
33 Asavavisithchal S,Slater D,Kennedy A R.Journal of Materials Science,2004,39(18), 5873.
34 Santosa S P,Wierzbicki T,Hanssen A G,et al.International Journal of Impact Engineering,2000,24(5), 509.
35 Guo L W,Yu J L,Li Z B.Acta Mechanica,2010,213(3-4), 349.
36 Asavavisithchai S,Slater D,Kennedy A R.Journal of Materials Science,2004,39, 7395.
37 Yamada Y,Banno T,Xie Z K,et al.Materials Transactions,2005,46(12), 2633.
38 Emanoil L,Movahedi N,Marsavina L.Composite Structure,2017,180, 709.
39 Guillow S R, Lu G, Grzebieta R H. International Journal of Mechanical Sciences,2001,43(9), 2103.
40 Emanoil L,Movahedi N.Materials Letters,2017,206, 182.
41 Taherishargh M,Vesenjak M,Belova I V,et al.Materials & Design,2016,99, 356.
42 Hall I W,Guden M,Claar T D.Scripta Materialia,2002,46(7), 513.
43 Duarte I,Vesenjak M,Krstulovic-Opara L,et al.Composite Structures,2015,124, 128.
44 Duarte I,Krstulovic-Opara L,Vesenjak M.Composite Structures,2018,192, 184.
45 Reyes A,Hopperstad O S,Hanssen A G,et al.International Journal of Impact Engineering,2004,30(7), 805.
46 Santosaa S,Wierzbickia T.Computers & Structures,1998,68(4), 343.
47 Yang An,Cui'E Wen,Peter Hodgson,et al.Applied Mechanics and Mate-rials,2012,152-154, 436.
48 Ryan Smith,William Altenhof,Matthew Lapain.International Journal of Impact Engineering,2016,88, 214.
49 Rajendran R,Sai K P,Chandrasekar B,et al.Materials & Design,2009,30(5), 1777.
50 Liu H,Cao Z K,Luo H J,et al.Materials Science & Engineering A-Structural Materials Properties Microstructure and Processing,2013,570, 27.
51 Liu H,Yao G,Cao Z,et al.Light metals,Springer, 2012, pp.517.
52 Wang Q,Fan Z,Song H,et al.International Journal of Crashworthiness,2005,10(5), 535.
53 Djamaluddin F,Abdullah S,Ariffin A K,et al.Thin-Walled Structures,2015,87, 1.
54 Gao Q,Wang L,Wang Y,et al.Thin-Walled Structures,2016,100, 105.
55 K1l1caslan C.Thin-Walled Structures,2015,96, 82.
56 Calladine C R,English R W.International Journal of Mechanical Sciences,1984,26(11), 689.
57 Mukai T,Miyoshi T,Nakano S,et al. Scripta Materialia,2006,54(4), 533.
58 Raj R E,Parameswaran V,Daniel B S S.Materials Science & Engineering A,2009,526(1-2), 11.
59 Kim A,Chen S S,Hasen M A,et al.Key Engineering Materials,2004,270-273, 46.
60 Wierzbicki T,Recke L,Abramowicz W,et al.Composite Structures,1994,51(6), 625.
61 Kecman D.International Journal of Mechanical Science,1983,25(9), 623.
62 Hanssen A G,Hopperstad O S,Langseth M.Acta Mechanica,2000,142(1-4), 13.
63 Shojaeifard M H,Zarei H R,Talebitooti R,et al.Acta Mechanica Solida Sinica,2012,25(6), 616.
64 Duarte I,Vesenjak M,Krstulovic-Opara L,et al.Materials & Design,2015,66, 532.
65 Duarte I,Vesenjak M,Krstulovic-Opara L.Composite Structures,2014,109, 48.
66 Santosa S,Banhart J,Wierzbicki T.Acta Mechanica,2001,148(1-4), 199.
67 Santosa S,Banhart J,Wierzbicki T.Advanced Engineering Materials,2000,2(4), 223.
68 Guo L W,Yu J L.Acta Mechanica,2011,222, 233.
69 Guo L W,Yu J L.International Journal of Impact Engineering,2011,38(2-3), 85.
70 Li Z B,Lu F Y.Journal of Reinforced Plastics and Composites,2015,34(9), 761.
[1] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[2] 单既万, 胡正飞, 王宇, 姚骋, 张振. 泡沫铝冶金连接及其界面结构与力学性能研究[J]. 《材料导报》期刊社, 2017, 31(8): 94-97.
[3] 余为,薛海龙. 浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 111-115.
[4] 黄本生, 赵星, 吴序鹏, 刘段苏, 曾强. 泡沫铝连接件焊接工艺的应用现状与展望*[J]. 《材料导报》期刊社, 2017, 31(19): 66-71.
[5] 闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
[6] 刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed