Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 92-96    https://doi.org/10.11896/j.issn.1005-023X.2017.018.019
  材料研究 |
工业闭孔泡沫铝压缩力学性能及变形机理*
闫畅, 宋绪丁, 荆传贺, 封硕
长安大学道路施工技术与装备教育部重点实验室,西安 710064
Mechanical Properties and Deformation Mechanism of Industrial Aluminum Foams
YAN Chang, SONG Xuding, JING Chuanhe, FENG Shuo
Key Laboratory of Road Construction Technology & Equipment of Ministry of Education, Chang’an University, Xi’an 710064
下载:  全 文 ( PDF ) ( 1936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝是一种新型的结构和功能材料,因特殊的能量吸收特性而在工程领域具有很好的应用前景。为了研究基体材料对泡沫铝力学性能和变形失效机理的影响,同时为工业泡沫铝材料提供更具参考价值的性能指标,对工业上最常见的两种不同基体(纯铝基体和7050铝合金基体)的泡沫铝材料进行了准静态压缩力学性能的试验,并对其变形机理进行了分析。试验结果表明,相同规格的7050基体泡沫铝的压缩力学性能高于纯铝基体泡沫铝,能量吸收能力也远大于纯铝基体泡沫铝。纯铝基体泡沫铝在压缩载荷下呈现逐层坍塌、连续性破坏的模式,试件在完全压实后呈碎渣;7050基体泡沫铝表现出逐层坍塌、间断式破坏的模式,试件在完全压实后呈完整的块状。7050基体泡沫铝的泡孔结构比纯铝基体泡沫铝均匀,力学性能更加稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫畅
宋绪丁
荆传贺
封硕
关键词:  闭孔泡沫铝  力学性能  变形机理  压缩实验    
Abstract: Aluminum foams are a new class of structural and functional materials. It has a bright prospect in engineering field. In order to study the effects of matrix materials on the mechanical properties and deformation mechanism of aluminum foam and endow industrial aluminum foam with a more useful and reliable performance index, two kinds of industrial foams, Al-matrix and 7050 Al-alloy-matrix foams, were studied. The results showed that the compressive mechanical properties of 7050 Al-alloy-matrix foam was much higher than that of Al-matrix foam, so was its energy absorption ability. The deformation mechanism of Al-matrix foam was that the cells collapsed layer by layer during deformation, continuously. The outside materials of Al-matrix foam peeled off during the compression remarkably and compressed to be crumbs finally. The deformation mechanism of 7050-matrix foam was that the cells collapsed layer by layer during the deformation, discontinuously. The specimens were still whole bulks after compression finally. The cell structure of 7050-matrix foam was more uniform than that of Al-matrix foam in the present study, therefore its mechanical stability was better than Al-matrix foam.
Key words:  closed-cell aluminum foam    mechanical property    deformation mechanism    compression test
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 中央高校基金(310825175007;310825163407;310825161001);陕西省科技统筹创新工程重点实验室项目(2014SZS11-P04)
作者简介:  闫畅:女,1990年生,博士研究生,主要研究方向为泡沫铝材料的力学性能与加固 E-mail:1306352588@qq.com
引用本文:    
闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
YAN Chang, SONG Xuding, JING Chuanhe, FENG Shuo. Mechanical Properties and Deformation Mechanism of Industrial Aluminum Foams. Materials Reports, 2017, 31(18): 92-96.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.019  或          http://www.mater-rep.com/CN/Y2017/V31/I18/92
1 Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Second ed. Oxford: Cambridge University Press, 1997.
2 Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001,46:559.
3 Simone A E, Gibson L J. Aluminum foams produced by liquid-state processes[J]. Acta Mater, 1998,46:3109.
4 Li Yonggang, Wei Yinghui, Hou Lifeng, et al. Fabrication and compressive behaviour of an aluminium foam composite[J]. J Alloys Compd, 2015,649:76.
5 Wang Bin, He Deping, Shu Guangji. Compressive properties and energy absorption of foamed Al alloy[J]. Acta Metall Sinica,2000,36(10):1037(in Chinese).
王斌,何德坪,舒光冀.泡沫Al合金的压缩性能及其能量吸收[J], 金属学报,2000,36(10):1037.
6 Baltatescu O, Florea R M, Roman C, et al. Stabilized aluminum foams, unique material for industrial applications [J]. J Optoelectron Adv Mater, 2013,15:823.
7 Han Fusheng, Zhu Zhen’gang, Liu Changsong. Compressive deformation and energy absorbing characteristics of foamed aluminum[J]. Acta Phys Sinica,1998,47(3):520(in Chinese).
韩福生,朱震刚,刘长松,泡沫Al 压缩形变及能量吸收特征[J]. 物理学报,1998,47(3):520.8 Cheng Hefa, Huang Xiaomei, Xu Ling. Research on dynamic compressive properties and energy absorption of aluminum foam[J]. Ordnance Mater Sci Eng,2003,26(5):37(in Chinese).
程和法, 黄笑梅, 许玲.泡沫铝的动态压缩性能和吸能性研究[J]. 兵器材料科学与工程, 2003,26(5):37.
9 Kadkhodapour J, et al. Plastic deformation and compressive mechanical properties of hollow sphere aluminum foams produced by space holder technique [J]. Mater Des, 2015,83:352.
10Gaitanaros S, Kyriakides S.Dynamic crushing of aluminum foams: Part Ⅱ—Analysis[J]. Int J Solids Struct, 2014,51:1646.
11Matej Vesenjak, Mohd Ayub Sulong, Lovre Krstulovic-Opara, et al. Dynamic compression of aluminium foam derived from infiltration casting of salt dough [J]. Mechan Mater, 2016,93:96.
12Kader M A, Islam M A, Hazell P J, et al. Modelling and characte-rization of cell collapse in aluminium foamsduring dynamic loading[J]. Int J Impact Eng, 2016,96:78.
13Pang Baojun, Zheng Wei,Chen Yong. Dynamic impact behavior of aluminum foam with a taylor impact test and a theoretical analysis[J]. J Vib Shock, 2013,32(12):154(in Chinese).
庞宝君,郑伟,陈勇. 基于Taylor 实验及理论分析的泡沫铝动态冲击特性研究[J].振动与冲击, 2013,32(12):154.
14Pan Yi, et al. Experimental study on dynamic behavior of foamed aluminum[J]. Mater Sci Eng, 2002,20(3):341(in Chinese).
潘艺,等.泡沫铝动态力学性能的实验研究 [J]. 材料科学与工程, 2002,20(3):341.
15Xu Ling, Huang Xiaomei, Cheng Hefa. Investigation on the compressive properties of some Al foams with different matrixes[J]. J Hefei University of Technology (Nat Sci), 2003,26(5):1079(in Chinese).
许玲,黄笑梅,程和法,几种不同性质基体泡沫铝的压缩性能研究[J]. 合肥工业大学学报(自然科学版),2003,26(5):1079.
16Wang H, Zhoun X Y, Long B, et al. Compression behavior of Al2O3k/Al composite materials fabricated by counter-gravity infiltration casting [J]. Mater Sci Eng A, 2013,582(31):6.
17Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. Oxford:Pergramon Press, 1997:330.
18Kang Yingan, Zhang Junyan, Tan Jiacai. Effect of relative density on the compressive property and energy absorption capacity of aluminum foams [J]. J Funct Mater, 2006,37(2):247(in Chinerse).
康颖安,张俊彦,谭加才,相对密度对泡沫铝力学性能和能量吸收性能的影响[J]. 功能材料,2006,37(2):247.
19Cao Xiaoqing, Yang Guitong. Mechanical behavior and energy absorption capacity of aluminum foam under unianxial compression [J]. Nonferr Met, 2006,58(4):9(in Chinese).
曹晓卿, 杨桂通.泡沫铝的单向压缩行为及其吸能性[J]. 有色金属, 2006,58(4):9.
20Liu Jiaan, Qu Qingxiang, Liu Yan, et al. Compressive properties of Al-Si-SiC composite foams at elevated temperatures[J]. J Alloys Compd, 2016,676:239.
21Yuan Jianyu, Chen Xiang, Zhou Wenwu, et al. Study on quasi-static compressive properties of aluminum foam-epoxy resin composite structures[J]. Composites Part B, 2015,79:301.
22Maiti S K, et al. Deformation and energy absorption diagrams for celluar solids [J]. Acta Met,1984,32(11):1963.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed