Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 111-115    https://doi.org/10.11896/j.issn.1005-023X.2017.022.022
  材料研究 |
浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*
余为,薛海龙
燕山大学河北省重型装备与大型结构力学可靠性重点实验室,秦皇岛 066004
Effect of Soaking Corrosion on Flexural Properties of Foam Aluminum-Epoxy Composites
YU Wei, XUE Hailong
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004
下载:  全 文 ( PDF ) ( 630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了两种泡沫铝孔径的泡沫铝-环氧树脂复合材料。将试件分别浸泡于蒸馏水和海水中,得出了其吸湿率与浸泡时间的关系曲线。通过三点弯曲实验研究了浸泡腐蚀对复合材料弯曲强度和弯曲刚度等力学性能的影响。研究结果表明:泡沫铝-环氧树脂复合材料的吸湿率随浸泡时间的延长而逐渐增大,且试件在海水中浸泡的吸湿率大于在蒸馏水中的吸湿率。浸泡腐蚀大幅度地降低了泡沫铝-环氧树脂复合材料的弯曲力学性能。添加偶联剂的试件的弯曲强度和弯曲刚度均比无偶联剂试件的值更大,特别是对于泡沫铝孔径为2 mm的复合材料试件,添加偶联剂使得其弯曲强度和弯曲刚度分别提高了51.7%和65.4%。另外,1 mm孔径泡沫铝复合材料试件的弯曲强度和弯曲刚度均比2 mm孔径泡沫铝复合材料试件的值更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余为
薛海龙
关键词:  泡沫铝  环氧树脂  浸泡腐蚀  弯曲力学性能    
Abstract: Foam aluminum-epoxy composites with two types of foam aluminum pore size were prepared. The specimens were soaked in the distilled water and seawater respectively. The curves between moisture rate and soaking time were obtained. The effect on the flexural properties of specimens in soak corrosion were studied by three point bending experiment. It was found that the moisture rate of composites increased with the increase of soaking time, and the moisture rates of composites soaking in seawater were higher than that of composites soaking in distilled water. The flexural mechanical properties of foam aluminum-epoxy were greatly reduced by soaking corrosion. The flexural strength and stiffness of specimens with coupling agent were higher than that of specimens without coupling agent. Especially for the composites with foam aluminum pore size of 2 mm, the flexural strength and stiffness increased by 51.7% and 65.4%, respectively. Additionally, the flexural strength and stiffness of specimens with foam aluminum pore size of 1 mm are higher than that of specimens with foam aluminum pore size of 2 mm.
Key words:  foam aluminum    epoxy resin    soaking corrosion    flexural mechanical properties
                    发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *河北省自然科学基金青年基金(A2014203051)
作者简介:  余为:男,1979年生,博士,副教授,硕士研究生导师,研究方向为轻质多孔材料及复合材料E-mail:yuweichn@163.com;薛海龙:男,1990年生,硕士,研究方向为轻质多孔材料及复合材料E-mail:eig418801974@163.com
引用本文:    
余为,薛海龙. 浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 111-115.
YU Wei, XUE Hailong. Effect of Soaking Corrosion on Flexural Properties of Foam Aluminum-Epoxy Composites. Materials Reports, 2017, 31(22): 111-115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.022  或          http://www.mater-rep.com/CN/Y2017/V31/I22/111
1 Banhart J. Manufacture characterization and application of cellular metals and metal foams[J]. Prog Mater Sci, 2001,46:559.
2 Zhao W X, Zhao N Q, Guo X Q. Study progress for new type functional materials of foam aluminum[J]. Heat Treatment Metals, 2004,29(6):7(in Chinese).
赵万祥, 赵乃勤, 郭新权. 新型功能材料泡沫铝的研究进展[J]. 金属热处理, 2004,29(6):7.
3 Mu J C, Xi H F, Long Z Q. Study on the mechanics and energy absorb property of aluminum foam in different void rate and different aperture[J]. Experiment Mechan, 2009,24(3):223(in Chinese).
穆建春, 习会峰, 龙志勤. 不同孔隙率及孔径泡沫铝的力学与吸能特性研究[J]. 实验力学, 2009,24(3):223.
4 Tilbrook M T, Moon R J, Hoffman M. On the mechanical properties of alumina-epoxy composites with an interpenetrating network structure[J]. Mater Sci Eng A, 2005,393:170.
5 Yu Y H, Liang B. Calculation of effective elastic modulus of foamed aluminum/epoxy resin composite based on IPC material[J]. Mater Mechan Eng, 2008,32(11):90(in Chinese).
于英华, 梁冰. 基于网络交织复合材料预测泡沫铝/环氧树脂复合材料的有效弹性模量[J]. 机械工程材料, 2008,32(11):90.
6 Xie Y L, Wang R, Lin Z R, et al. Compressive mechanical properties of foam aluminum/modified epoxy composite[J]. Ordnance Mater Sci Eng, 2010, 33(5):49(in Chinese).
谢永亮, 王瑞, 林振荣, 等. 泡沫铝/改性环氧树脂复合材料压缩力学性能的试验研究[J]. 兵器材料科学与工程, 2010,33(5):49.
7 Yu W, Li H J, Zhao Z, et al. Compressive mechanical properties of foam aluminum-epoxy interpenetrating phase composites[J]. Acta Materiae Compositae Sinica, 2012,29(4):377(in Chinese).
余为, 李慧剑, 赵钊, 等. 泡沫铝/环氧树脂互穿相复合材料压缩力学性能[J]. 复合材料学报, 2012,29(4):377.
8 Yu W, Yang L, Liu X J, et al. Studies on elastic constants of foam aluminum/epoxy composites with two pore shapes[J]. J Yanshan University, 2013,37(3):278(in Chinese).
余为, 杨柳, 刘学瑾, 等. 两种孔隙形状泡沫铝/环氧树脂复合材料弹性常数研究[J]. 燕山大学学报, 2013,37(3):278.
9 Xu P, Yang K, Yu Y H. Research on damping property of foam aluminum-epoxy resin composite[J]. Hot Working Technology, 2013,42(16):110(in Chinese).
徐平, 杨昆, 于英华. 泡沫铝-环氧树脂复合材料阻尼性能的研究[J]. 热加工工艺, 2013,42(16):110.
10 Liu Y, Gong X L. Compressive behavior and energy absorption of metal porous polymer composite with interpenetrating network structure[J]. Trans Nonferrous Metals Soc China, 2006,16:439.
11 Qi M S, Zhang J N, Yang W, et al. Research on shock cushioning performance of foamed aluminium polyurethane composite structure[J]. Packag Eng, 2010,31(19):6(in Chinese).
齐明思, 张晋宁, 杨卫, 等. 泡沫铝-聚氨酯复合结构的缓冲性能研究[J]. 包装工程, 2010,31(19):6.
12 Xie W H, Du H T, Li S C. Experimental study on dynamic mechanical performance of polyurethane aluminum foams composites [J]. Acta Materiae Compositae Sinica, 2011,28(3):103(in Chinese).
谢卫红, 杜红涛, 李顺才. 聚氨酯泡沫铝复合材料动态力学实验[J]. 复合材料学报, 2011,28(3):103.
13 Wang R, Lin Z R, Lu Y S, et al. Dynamic compression experimental study and energy absorption of aluminum foam composite materials[J]. Ordnance Mater Sci Engi, 2010,33(6):40(in Chinese).
王瑞, 林振荣, 卢玉松, 等. 泡沫铝复合材料的动态压缩试验研究和吸能分析[J]. 兵器材料科学与工程, 2010,33(6):40.
14 Dukhan N, Rayess N, Hadley J. Characterization of aluminum foam-polypropylene interpenetrating phase composites: Flexural test results[J]. Mechan Mater, 2010,42(2):134.
15 Zhang Y, Chen L, Chen R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum[J]. Explosion Shock Waves, 2014,34(3):373(in Chinese).
张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究[J]. 爆炸与冲击, 2014,34(3):373.
16 Periasamy C, Tippur H V. Experimental measurements and numerical modeling of dynamic compression response of an interpenetrating phase composite foam[J]. Mechan Res Commun, 2012,43:57.
17 Li H J, Liu Z L, Yu W, et al. Electromagnetic shielding and mechanical properties of foam aluminum/epoxy composite[J]. Mater Rev:Res, 2015,29(4):150(in Chinese).
李慧剑, 刘泽良, 余为, 等. 泡沫铝/环氧树脂复合材料电磁屏蔽及力学性能实验[J]. 材料导报:研究篇, 2015,29(4):150.
18 Qi M, Sun L, Wang X, et al. High on shock-cushioning and energy-absorption-performance analysis on aluminum foam-polyurethane composite[J]. Metall Mining Industry, 2015,7(3):303.
19 Liu S, Li A, He S, et al. Cyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase composites[J]. Compos Part A, 2015,78:35.
20 Ray B C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites[J]. J Colloid Interface Sci, 2006,298(1):111.
21 Zhang H, Yang J H, Li H B, et al. Effects of hydrothermal aging on properties of epoxy resin[J]. Ordnance Mater Sci Eng, 2010,33(3):41(in Chinese).
张晖,阳建红,李海斌,等. 湿热老化环境对环氧树脂性能影响研究[J]. 兵器材料科学与工程, 2010,33(3):41.
22 Yu W, Li H J, Liang X, et al. Mechanical properties of HGM/epoxy and foam aluminum-HGM/epoxy with natural aging[J]. Acta Materiae Compositae Sinica, 2013,30(4):66(in Chinese).
余为,李慧剑,梁希,等. 自然老化对空心玻璃微珠/环氧树脂及泡沫铝-空心玻璃微珠/环氧树脂力学性能的影响[J]. 复合材料学报, 2013,30(4):66.
23 Doyle G, Pethrick R A. Environmental effects on the ageing of epoxy adhesive joints[J]. Int J Adhes Adhes, 2009,29(1):77.
24 Gao Y L, Zhou E P, Yun H L, et al. Aging behavior of epoxy/Al adhesive joint in sodium chloride aqueous solution[J]. Therm Osetting Resin, 2011,26(3):18(in Chinese).
高岩磊, 周二鹏, 郧海丽, 等. 环氧/铝胶接接头在氯化钠水溶液中的老化行为[J]. 热固性树脂, 2011,26(3):18.
25 Xu Z R, Gao Y L. Molecular simulation of moisture aging to epoxy resin/uranium[J]. Synthet Mater Aging Application, 2014,43(4):9(in Chinese).
徐作瑞, 高云亮. 环氧树脂/铝界面湿气老化性能的分子模拟[J]. 合成材料老化与应用, 2014,43(4):9.
[1] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[2] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[3] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[4] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[5] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[6] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[7] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[8] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[9] 单既万, 胡正飞, 王宇, 姚骋, 张振. 泡沫铝冶金连接及其界面结构与力学性能研究[J]. 《材料导报》期刊社, 2017, 31(8): 94-97.
[10] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[11] 姜雪,刘锋,雷子萱,吕游,刘育红,井新利. 热熔预浸工艺及热熔热固性树脂的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 94-100.
[12] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[13] 柳和生, 段翔宇, 赖家美, 黄兴元, 陈乐乐. 超声振荡对多壁碳纳米管/VARTM用环氧树脂复合材料导电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(3): 112-115.
[14] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[15] 陈毓焘, 李文晓, 金世奇. 铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 11-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed