Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 36-40    https://doi.org/10.11896/j.issn.1005-023X.2017.04.009
  材料研究 |
粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*
李苗苗, 陈平, 王辉, 李建超
北京科技大学机械工程学院, 北京 100083
Wear Resistance of Fly Ash Cenospheres/Epoxy Resin Composite Coating
LI Miaomiao, CHEN Ping, WANG Hui, LI Jianchao
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了粉煤灰微珠/环氧树脂复合材料涂层,并利用JM-V型磨耗仪对涂层材料进行了磨损试验,研究了粉煤灰微珠含量、微珠粒径以及试验负载和速度对复合涂层耐磨性能的影响。结果表明,随粉煤灰微珠含量的增加,涂层的耐磨性呈先增加后下降的趋势,当填充的微珠质量分数为15%时,复合材料涂层的耐磨性最佳。随微珠粒径的增大,微珠在磨损过程中更加容易破碎,导致复合材料涂层的耐磨性随之下降。对比不同载荷和速度下复合材料涂层的磨损试验结果发现,随负载的增加,复合材料涂层的耐磨性降低;加快试验速度,涂层材料的磨损量也随之变大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李苗苗
陈平
王辉
李建超
关键词:  粉煤灰微珠  环氧树脂  复合材料  涂层  耐磨    
Abstract: The epoxy resin composite coating filled with fly ash cenospheres was prepared. The wear resistance of the compo-site coating was measured using JM-V abrasion tester. And the effect of cenospheres content, cenospheres particle size, test load and speed on the wear resistance of composite coating was discussed. The results show that with the increase of cenospheres content, the wear resistance of the composites coating increases first and then decreases and it reaches the maximum when the content of cenos-pheres is 15wt%. With the increase of particle size of cenospheres, the cenospheres are more easily broken in the wear process, which leads to the wear resistance decrease of the composite coating. Compared with the wear test results of the composite coating under different load and speed, it is found that the wear resistance of the composite coating decreases with the increase of the load. Increase the test speed, the wear mass loss of the composite coating will become larger.
Key words:  fly ash cenospheres    epoxy resin    composites    coating    wear resistance
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: *国家自然科学基金(51305023)
通讯作者:  陈平:通讯作者,女,1973年生,博士,副教授,主要研究方向为聚合物基复合材料 E-mail:chenp@ustb.edu.cn   
引用本文:    
李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.009  或          http://www.mater-rep.com/CN/Y2017/V31/I4/36
1 Sun T, Fan H Y, Wang Z, et al. Modified nano Fe2O3-epoxy composite with enhanced mechanical properties[J]. Mater Des,2015,87:10.
2 Zhou H L Z, Liu H Y, Zhou H M, et al. On adhesive properties of nano-silica/epoxy bonded single-lap joints[J]. Mater Des,2016,95:212.
3 Conradi M, Zorko M, Kocijan A, et al. Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers[J]. Mater Chem Phys,2013,137:910.
4 Ji Q L, Zhang M Q, Rong M Z, et al. Tribological properties of nanosized silicon carbide filled epoxy composites[J]. Acta Mater Compos Sin,2004,21(6):14(in Chinese).
纪秋龙, 章明秋, 容敏智, 等. 纳米碳化硅填充环氧树脂复合材料的摩擦磨损特性[J]. 复合材料学报,2004,21(6):14.
5 Li J N, Yu K J, Qian K, et al. The reinforcing and toughening effect of grapheme/SiO2 hybrid material on epoxy-based composites[J]. Mater Rev: Res,2014,28(10):51(in Chinese).
李佳铌, 俞科静, 钱坤, 等. 石墨烯/SiO2杂化材料增强增韧环氧树脂基复合材料[J]. 材料导报:研究篇,2014,28(10):51.
6 Palraj S, Selvaraj M, Maruthan K, et al. Corrosion and wear resis-tance behavior of nano-silica epoxy composite coatings[J]. Prog Org Coat,2015,81:132.
7 Kang Y K, Chen X H, Song S Y, et al. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings[J]. Appl Surf Sci,2012,258:6384.
8 Luo Y, Dong X M, Yu X Y, et al. Tribological performance of modified nano-Si3N4/EP composites[J]. Polym Mater Sci Eng,2010,26(6):71(in Chinese).
罗颖, 董先明, 禹筱元, 等. 改性纳米 Si3N4/环氧树脂复合材料的摩擦磨损特性[J]. 高分子材料科学与工程,2010,26(6):71.
9 Guo Q B, Tan Y H, Li C J. Friction and wear properties of SCF/EP composites filled with nano-SiO2 [J]. Polym Mater Sci Eng,2011,27(7):34(in Chinese).
郭清兵, 谭赟华, 李翠金. 纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能[J].高分子材料科学与工程,2011,27(7):34.
10 Kolay P K, Bhusal S. Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization[J]. Fuel,2014,117:118.
11 Acar I, Atalay M U. Recovery potentials of cenospheres from bituminous coal fly ashes[J]. Fuel,2016,180:97.
12 Zyrkowski M, Neto R C, Santos L F, et al. Characterization of fly-ash cenospheres from coal-fired power plant unit[J]. Fuel,2016,174:49.
13 Wang C F, Liu J C, Du H Y, et al. Effect of fly ash cenospheres on the microstructure and properties of silica-based composites[J]. Ceram Int,2012,38:4395.
14 Chen P, Ma F, Mei H F, et al. Erosive wear characteristics of high-alumina cenospheres filled epoxy resin composites [J]. J University of Science and Technology Beijing,2014,36(2):218(in Chinese).
陈平, 马峰, 梅华锋, 等. 高铝微珠/环氧树脂复合材料冲蚀磨损特性[J]. 北京科技大学学报,2014,36(2):218.
15 Chen P, Li M M, Ma F, et al. Abrasion performance of epoxy resin composite filled with cenopheres [J]. J Funct Mater,2015,46(22):22062(in Chinese).
陈平, 李苗苗, 马峰, 等. 微珠填充环氧树脂复合材料的磨耗性能[J]. 功能材料,2015,46(22):22062.
16 Manakari V, Parande G, Doddamani M, et al. Dry sliding wear of epoxy/cenosphere syntactic foams [J]. Tribology Int,2015,92:425.
17 Das A, Satapathy B K. Structural, thermal, mechanical and dyna-mic mechanical properties of cenosphere filled polypropylene compo-sites [J]. Mater Des,2011,32:1477.
18 Srivastava V K, Pawar A G. Solid particle erosion of glass fiber reinforced flyash filled epoxy resin composites [J]. Compos Sci Technol,2006,66:3021.
19 Gu J, Wu G H, Zhang Q. Effect of porosity on the damping properties of modified epoxy composites filled with fly ash [J]. Scripta Mater,2007,57:529.
20 Ye S J, Fan Q, Deng L Y, et al. The mechanical and tribological properties of copper filled PTFE composites[J]. Lubrication Eng,2010,35(9):60(in Chinese).
叶索娟, 范清, 邓联勇, 等. 铜粉对 PTFE复合材料力学及摩擦学性能的影响[J]. 润滑与密封,2010,35(9):60.
21 Xie T, Jiang K, Ding Y. Numerical simulation of influence of filler size on tribological properties of Cu/PTFE composites[J]. Tribology,2016,36(1):35(in Chinese).
解挺, 江凯,丁亚. 填料粒径对Cu/PTFE复合材料摩擦学性能影响的数值模拟[J]. 摩擦学学报,2016,36(1):35.
22 Ding J, Ma J Q, Xue Q J. Dry-sliding tribological properties of isocyanate-terminated polybutadine rubber-epoxy resin filled with nano Al2O3 coating[J]. Tribology,2006,26(4):314(in Chinese).
丁军, 马吉强, 薛群基. 纳米Al2O3填充端异氰酸酯基聚丁二烯橡胶-环氧树脂复合涂层的干滑动摩擦磨损性能研究[J]. 摩擦学学报,2006,26(4):314.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[8] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[9] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[10] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[11] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[12] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[13] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[14] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[15] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed