Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24080036-5    https://doi.org/10.11896/cldb.24080036
  光热调控超材料的应用与创新 |
自适应变色迷彩涂层制备及性能研究
吴法霖1,2,†, 邓贤明2,3,†, 张天才2, 程云涛1, 陈坤1, 高琴1, 孙宽1,*
1 重庆大学低品位能源利用技术及系统教育部重点实验室, 重庆 400044
2 西南技术工程研究所, 重庆 400039
3 重庆大学智慧无人系统重庆市重点实验室, 重庆 400044
Research on Preparation and Performance of Adaptive Color-changing Camouflage Coating
WU Falin1,2,†, DENG Xianming2,3,†, ZHANG Tiancai2, CHENG Yuntao1, CHEN Kun1, GAO Qin1, SUN Kuan1,*
1 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
2 Southwest Technology and Engineering Research Institute, Chongqing 400039, China
3 Chongqing Key Laboratory of Intelligent Unmanned Systems, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 28799KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为有效提高装备在野外与不同的背景快速融合的需求,采用利于大面积生产和低成本的丝网印刷方法制备自适应温致变色迷彩涂层。利用氟碳树脂和丙烯酸树脂包覆变色材料,研究涂层制备体系和制备工艺,并通过对变色涂层进行性能测试,制备得到具有应用前景的可逆变色迷彩涂层。本研究利用升温辅助层与变色迷彩涂层共同作用,实现了变色迷彩涂层快速可逆自适应变化。利用色差仪、万能拉伸机、耐水色牢度测试仪、盐雾试验机等仪器对涂层的性能进行了测试。测试结果表明,使用聚氨酯树脂体系制备的温致变色迷彩涂层具有应用前景,当变色迷彩涂层厚度为0.6 mm时,涂层变色时间为6~9 s。将变色迷彩涂层放置于林地、荒漠中,可探测度分别约为0.51、0.56。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴法霖
邓贤明
张天才
程云涛
陈坤
高琴
孙宽
关键词:  变色  涂层  自适应  可探测度    
Abstract: In order to effectively improve the demand for rapid integration of equipment with different backgrounds in the field, the adaptive thermochromic camouflage coating was prepared by a screen printing method which is conducive to large-scale production and low cost. By using fluorocarbon resin and acrylic resin to cover color-changing materials, the coating preparation system and preparation process were studied, and the reversible color-changing camouflage coating with application prospect was prepared by testing the properties of color-changing coatings. In this study, the rapid reversible adaptive change of camouflage coating was realized by the joint action of heating auxiliary layer and color-changing coating. The physicochemical properties of the coating were tested by means of colorimeter, universal tensile testing machine, water fastness tester and salt spray tester. The test results show that the thermochromic camouflage coating prepared by polyurethane resin system has a pro-mising application prospect. When the camouflage coating thickness is 0.6 mm, the coating discoloration time is 6—9 seconds. The application of color-changing camouflage coatings in forested and desert environments yields detection rates of 0.51 and 0.56, respectively.
Key words:  color-changing    coating    adaptive    detectability
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TK01  
基金资助: 国家自然科学基金(62074022);重庆市杰出青年科学基金(cstc2021jcyj-jqX0015)
通讯作者:  *孙宽,博士,重庆大学能源与动力工程学院教授、博士研究生导师。目前从事可再生能源高效利用原理及技术的研究。cadxskyx@sina.com   
作者简介:  吴法霖,重庆大学能源与动力工程学院博士研究生,在孙宽教授的指导下进行研究。目前主要研究方向为柔性透明导电薄膜材料、电磁屏蔽材料、光学/红外伪装材料等。
邓贤明,重庆大学自动化学院博士研究生,主要从事伪装材料评估、目标识别算法研究。
†共同第一作者
引用本文:    
吴法霖, 邓贤明, 张天才, 程云涛, 陈坤, 高琴, 孙宽. 自适应变色迷彩涂层制备及性能研究[J]. 材料导报, 2025, 39(1): 24080036-5.
WU Falin, DENG Xianming, ZHANG Tiancai, CHENG Yuntao, CHEN Kun, GAO Qin, SUN Kuan. Research on Preparation and Performance of Adaptive Color-changing Camouflage Coating. Materials Reports, 2025, 39(1): 24080036-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080036  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24080036
1 Wang J L. Journal of Spacecraft TT&C Technology, 2015, 34(6), 489(in Chinese).
王建立. 飞行器测控学报, 2015, 34(6), 489.
2 Yang H, He C, Pan J L, et al. Acta Armamentarii, 2021, 42(1), 118(in Chinese).
杨辉, 何超, 潘家亮, 等. 兵工学报, 2021, 42(1), 118.
3 Lu Z Y, Zhou Y, Sun J F, et al. Chinese Journal of Lasers, 2017, 44(1), 0110001-1(in Chinese).
卢智勇, 周煜, 孙建峰, 等. 中国激光, 2017, 44(1), 0110001-1.
4 Li Y B, Sun F B, Wang X X, et al. Materials Reports, 2020, 34(Z2), 71(in Chinese).
李永波, 孙芳兵, 万晓霞, 等. 材料导报, 2020, 34(Z2), 71.
5 Li Q, Dong G F, Wang Q. Chinese Journal of Lasers, 2007, 34(10), 1348(in Chinese).
李琦, 董国峰, 王骐. 中国激光, 2007, 34(10), 1348.
6 Miao C K, Lou S L, Li T, et al. Optics and Precision Engineering, 2022, 30(20), 2501(in Chinese).
苗传开, 娄树理, 李婷, 等. 光学精密工程, 2022, 30(20), 2501.
7 Ke K. Ship Electronic Engineering, 2022, 42(2), 84(in Chinese).
柯凯. 舰船电子工程, 2022, 42(2), 84.
8 Wei Q, Zhao J. Computer Science, 2023, 50(2), 191(in Chinese).
魏琦, 赵娟. 计算机科学, 2023, 50(2), 191.
9 Cai Y X, Shi L, TIian Z X. Acta Armamentarii, 2019, 40(11), 2296(in Chinese).
蔡云骧, 石磊, 田振锡. 兵工学报, 2019, 40(11), 2296.
10 Wei N D, Li G D, Cui G Z, et al. Dual Use Technologies & Products, 2022(10), 8(in Chinese).
韦宇德, 李广德, 崔光振, 等. 军民两用技术与产, 2022(10), 8.
11 Yang H F. Laser & Infrared, 2012, 42 (5), 481.
12 Xu W D, Xiao F F, Liu H, et al. Journal of Army Engineering University of PLA, 2023, 2(3), 1(in Chinese).
许卫东, 肖菲菲, 刘珩, 等. 陆军工程大学学报, 2023, 2(3), 1.
13 Zhang H G, Huang T Z, Cao X D, et al. Small Arms, 2015, 6(3), 12(in Chinese).
张宏光, 黄天智, 曹晓东, 等. 轻兵器, 2015, 6(3), 12.
14 Kim H, Choi J, Kim K K, et al. Nature Communications, 2021, 12 (1), 4658.
15 Yang H R, Liu H R, Wang J L, et al. Materials Reports, 2025, 39(9), 23110159(in Chinese).
杨鸿睿, 刘洪蕊, 王结良, 等. 材料导报, 2025, 39(9), 23110159.
16 Fan H W, Li K R, Liu X L, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28451.
17 Zhuang B Y, Wang H, Zhang Q Q, et al. Journal of Beijing University of Technology, 2020, 46(10), 1091(in Chinese).
庄碧莹, 汪浩, 张倩倩, 等. 北京工业大学学报, 2020, 46(10), 1091.
18 Jiang H P, Hu M, Tu H, et al. New Chemical Materials, 2024, 52(2), 11(in Chinese).
蒋何鹏, 胡敏, 涂虎, 等. 化工新型材料, 2024, 52(2), 11.
19 Wang Y, Liu D Q, Zhou F, et al. Materials China, 2020, 39(5), 404(in Chinese).
王义, 刘东青, 周峰, 等. 中国材料进展, 2020, 39(5), 404.
20 Deng A N, Zhang B, Zhang Y, et al. Computer Applications and Software, 2023, 40(12), 217(in Chinese).
邓安宁, 张博, 张怿, 等. 计算机应用与软件, 2023, 40(12), 217.
21 Wu H L, Deng X M, Zhang T C, et al. Spectroscopy and Spectral Analysis, 2024, 44(1), 283(in Chinese).
吴护林, 邓贤明, 张天才, 等. 光谱学与光谱分析, 2024, 44(1), 283.
22 Chang C I. Hyperspectral data processing (algorithm design and analysis)||progressive coding for spectral signatures, John Wiley & Sons Press, USA, 2013, pp. 1024.
[1] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[2] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[3] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[4] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[5] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[6] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[7] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[8] 赵思名, 郭震宇, 黄娅, 蓝帆, 赵卓菁, 李润, 张如范. 面向建筑节能的新型光热调控技术:主动电致变色与被动辐射制冷[J]. 材料导报, 2025, 39(1): 24100008-18.
[9] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[10] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[11] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[12] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[13] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[14] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[15] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed