Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24030057-17    https://doi.org/10.11896/cldb.24030057
  无机非金属及其复合材料 |
卷对卷技术制备钙钛矿太阳能电池的研究进展
赵佳薇1,2, 陈浩霖1,2, 罗倪1,3,*, 刘振国1,2,4,*
1 西北工业大学宁波研究院, 浙江 宁波 315000
2 西北工业大学柔性电子研究院, 西安 710000
3 西北工业大学化学与化工学院, 西安 710000
4 河南省柔性电子产业技术研究院, 郑州 450046
Advances in the Fabrication of Perovskite Solar Cells by Roll-to-Roll Technology
ZHAO Jiawei1,2, CHEN Haolin1,2, LUO Ni1,3,*, LIU Zhenguo1,2,4,*
1 Ningbo Institute of Northwestern Polytechnical University, Ningbo 315000, Zhejiang, China
2 Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710000, China
3 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710000, China
4 School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Zhengzhou 450046, China
下载:  全 文 ( PDF ) ( 30763KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在全球环境污染和能源危机日益严重的背景下,绿色清洁能源的开发和利用变得极为重要。太阳能电池作为一种有效的能源利用技术已经开展了大量的研究,其中,钙钛矿太阳能电池因其带隙可调、光电转换性能优异、资源丰富、制备工艺简单等优势得到了广泛关注,功率转换效率也从2009年的3.8%发展到现在的26.1%。近些年来,许多研究人员尝试将实验室旋涂制备扩展到大规模的涂层和印刷制备,卷对卷技术(R2R)便是实现这一器件升级的重要工艺方式。本综述介绍了与卷对卷技术相兼容的各类基板和可扩展沉积技术,并对相关的钙钛矿薄膜形态控制策略和器件性能优化方式进行详细的介绍,此外,对大面积钙钛矿太阳能电池未来的发展和挑战进行了简单的论述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵佳薇
陈浩霖
罗倪
刘振国
关键词:  钙钛矿太阳能电池  卷对卷技术  基板  可扩展沉积技术  性能优化    
Abstract: In recent years, perovskite solar cells (PSCs) have garnered significant attention as a potential mainstream technology in the future photovoltaic (PV) market. This is primarily attributed to their salient advantages including high efficiency, low cost, and ease of preparation. Notably, the power conversion efficiency (PCE) of PSCs has experienced a remarkable increase from 3.8% in 2009 to over 26% at present. Consequently, the adoption of roll-to-roll (R2R) technology for PSCs is considered a crucial step towards their successful commercialization. This article reviews the diverse substrates, scalable deposition techniques (such as solution-based knife-coating and spraying technology), and optimization procedures employed in recent years to enhance device performance within the R2R process. Additionally, novel perspectives are presented to enrich the existing knowledge in this field.
Key words:  perovskite solar cells    roll-to-roll technology    substrate    scalable deposition technology    performance optimization
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TM914  
基金资助: 宁波市重点研发计划(2023Z151);河南省重点研发专项(231111232500);工业和信息化部高质量发展专项(TC220A04A-206)
引用本文:    
赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
ZHAO Jiawei, CHEN Haolin, LUO Ni, LIU Zhenguo. Advances in the Fabrication of Perovskite Solar Cells by Roll-to-Roll Technology. Materials Reports, 2025, 39(1): 24030057-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030057  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24030057
1 Wenham S R, Green M. Progress in Photovoltaics: Research and Applications, 1996, 4(1), 3.
2 Andreani LC B A, Kowalczewski P, et al. Advances in Physics: X, 2019, 4(1), 1548305.
3 Kalyanasundaram K. CRC press, 2010.
4 Ning Z, Fu Y, Tian H. Energy & Environmental Science, 2010, 3(9), 1170.
5 Mufti N, Amrillah, T, Taufiq, A, et al. Solar Energy, 2020, 207, 1146.
6 Kessler F R D. Solar Energy, 2004, 77(6), 685.
7 Wang X, Khan M R, Gray J L, et al. IEEE Journal of Photovoltaics, 2013, 3, 737.
8 Kosten E D, Atwater J H, Parsons J, et al. Light: Science & Applications, 2013, 2(1), 6.
9 Ball J M, Lee M M, Hey A, Snaith H J. Energy & Environmental Science, 2013, 6(6), 1739.
10 Malinkiewicz O, Yella A, Lee Y H, et al. Nature photonics, 2014, 8(2), 128.
11 Song T B, Chen Q, Zhou H, etal. Journal of Materials Chemistry A, 2015, 3(17), 9032.
12 Green M A, Ho-Baillie A, Snaith H J. Nature photonics, 2014, 8(7), 506.
13 Park Y, Kim M K, Lee J S. Journal of Materials Chemistry C, 2021, 9(4), 1429.
14 Fan L, Pei Z, Wang P, et al. Journal of Electronic Materials, 2022, 51(6), 2801.
15 Yao J, Pan Q, Feng Z J, et al. APL Materials, 2021, 9(4), 040901.
16 Zhou Z, Qiao H W, Hou Y, et al. Energy & Environmental Science, 2021, 14(1), 127.
17 Wang P X. Chemical Communications, 2021, 57(41), 5051.
18 Ma F, Zhao Y, Li J, et al. Journal of Energy Chemistry, 2021, 52, 393.
19 Bhaumik S, Kar M R. ChemPlusChem, 2021, 86(4), 558.
20 Regalado-Pérez E, Díaz-Cruz E B, Landa-Bautista J, et al. ACS Applied Materials & Interfaces, 2021, 13(10), 11833.
21 Kojima A T K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
22 Im J H, Lee C R, Lee J W, et al. Nanoscale, 2011, 3(10), 4088.
23 Lee M M T, Joël, Miyasaka T, et al. Science, 2012, 338(6107), 643.
24 Im J H, Jang I H, Pellet N, et al. Nature Nanotechnology, 2014, 9(11), 927.
25 Park J, Kim J, Yun H S, et al. Nature, 2023, 616(7958), 724.
26 National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, 2023. https://www.nrel.gov/pv/cell-efficiency.html/. (Accessed 10 January 2024)
27 Min H, Lee D Y, Kim J, et al. Nature, 2021, 598(7881), 444.
28 Schmidt T M, Larsen-Olsen T T, Carlé J E, et al. Advanced Energy Materials, 2015, 5(15), 1500569.
29 Hwang K, Jung Y S, Heo Y J, et al. Advanced Materials, 2015, 27(7), 1241.
30 Dou B W J, Bruening K, et al. ACS Energy Letters, 2018, 3(10), 2558.
31 Galagan Y, Di Giacomo F, Gorter H, et al. Advanced Energy Materials, 2018, 8(32), 1801935.
32 Kim Y Y, Yang T Y, Suhonen R, et al. Nature Communications, 2020, 11(1), 5146.
33 Li H, Zuo C, Angmo D, et al. Nano-Micro Letters, 2022, 14(1), 79.
34 Beynon D, Parvazian, E, Hooper K, et al. Advanced Materials, 2023, 35(16), 2208561.
35 Weerasinghe H C, Macadam N, Kim J E, et al. Nature Communications, 2024, 15(1), 1656.
36 Cheng R C C, Zhang H, et al. Small, 2019, 15(8), 1804465.
37 Zhao Y, Ma F, Qu Z, et al. Science, 2022, 377(6605), 531.
38 Li H, Zuo C, Scully A D, et al. Flexible and Printed Electronics, 2020, 5(1), 014006.
39 Forrest S R. Nature, 2004, 428(6986), 911.
40 Deng Y, Peng E, Shao Y, et al. Energy & Environmental Science, 2015, 8(5), 1544.
41 Jeffrey G, Tait, et al. Advanced Functional Materials, 2015, 25(22), 3393.
42 Jung M, Ji S G, Kim G. et al. Chemical Society Reviews, 2019, 48(7), 2011.
43 Benitez-Rodriguez J F, Chen D, Gao M, et al. Solar RRL, 2021, 5(6), 2100341.
44 Jiang Z, Wang B, Zhang W, et al. Journal of Energy Chemistry, 2023, 80, 689.
45 Bruening K, Dou B, Simonaitis J, et al. Joule, 2018, 2(11), 2464.
46 Ma Y Z, Lu Z, Su X D, et al. Advanced Energy and Sustainability Research, 2023, 4(1), 2200133.
47 Deng W, Li F, Li J, et al. Nano Energy, 2020, 70, 104505.
48 Han G S, Lee S, Duff M L, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4697.
49 Castro-Hermosa S, Lucarelli G, Top M, et al. Cell Reports Physical Science, 2020, 1(5), 100045.
50 Jia C, Zhao X, Lai Y-H, et al. Nano Energy, 2019, 60, 476.
51 Wang R, Yu H, Dirican M, et al. ACS Applied Energy Materials, 2020, 3(1), 785.
52 Long J, Huang Z, Zhang J, et al. Flexible and Printed Electronics, 2020, 5(1), 013002.
53 Tang G, Yan F. Journal of Semiconductors, 2021, 42(10), 101606.
54 Jung H S, Han G S, Park N G, et al. Joule, 2019, 3(8), 1850.
55 Docampo P, Ball J M, Darwich M, et al. Nature Communications, 2013, 4, 2761.
56 Castriotta L A, Fuentes Pineda R, Babu V, et al. ACS Applied Materials & Interfaces, 2021, 13(25), 29576.
57 Dong Q, Chen M, Liu Y, et al. Joule, 2021, 5(6), 1587.
58 Zheng Z, Li F, Gong J, et al. Advanced Materials, 2022, 34(21), 2109879.
59 Gao D, Li B, Li Z, et al. Advanced Materials, 2023, 35(3), 2206387.
60 Van-Dang TranPammi S V N P, Byeong-JuHan, Yire Jeon, et al. Nano Energy, 2019, 65, 104018.
61 Liu X, Hu L, Wang R, et al. Polymers, 2019, 11(3), 427.
62 Roldan-Carmona C, Malinkiewicz O, Soriano A, et al. Energy & Environmental Science, 2014, 7(3), 994.
63 Di Giacomo F, Zardetto V, D'Epifanio A, et al. Advanced Energy Materials, 2015, 5(8), 1401808.
64 Jiang H, Feng J, Zhao H, et al. Advanced Science, 2018, 5(11), 1801117.
65 Li Z, Wang Z, Jia C, et al. Nano Energy, 2022, 94, 106919.
66 Qin F, Tong J, Ge R, et al. Journal of Materials Chemistry A, 2016, 4(36), 14017.
67 Zardetto V, Brown T. M, Reale A, et al. Journal of Polymer Science Part B: Polymer Physics, 2011, 49(9), 638.
68 Park J I, Heo J H, Park S H, et al. Journal of Power Sources, 2017, 341, 340.
69 Ma P, Dai C and Liu H. e-Polymers, 2019, 19(1), 555.
70 Isono I S. Materials Sciences and Applications, 2020, 11(1), 58.
71 Park S, SarinthipShin, HojunAhn, et al. Polymer Testing, 2020, 91(1), 106823.
72 Weerasinghe H C, Dkhissi Y, Scully A D, et al. Nano Energy, 2015, 18, 118.
73 Jiang S, Wang K, Zhang H, et al. Macromolecular Reaction Engineering, 2015, 9(5), 522.
74 Cheacharoen R, Rolston N, Harwood D, et al. Energy & Environmental Science, 2018, 11(1), 144.
75 Long B, Zhou X, Cao H, et al. Frontiers in Materials, 2022, 9, 892657.
76 Ehlich D and Sillescu H. Macromolecules, 1990, 23(6), 1600.
77 Zi W, Jin Z, Liu S, et al. Journal of Energy Chemistry, 2018, 27(4), 971.
78 Seok H J and Kim H K. Metals, 2019, 9(2), 120.
79 Xie H, Yin X, Guo Y, et al. Physica Status Solidi (RRL)-Rapid Research Letters, 2019, 13(5), 1800566.
80 Lee M, Jo Y, Kim D S, et al. Journal of Materials Chemistry A, 2015, 3(8), 4129.
81 Lee M, Jo Y, Kim D S, et al. Journal of Materials Chemistry A, 2015, 3(28), 14592.
82 Heo J H, Shin D H, Lee M L, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31413.
83 Mei D, Bai B, Qiu L, et al. ACS Applied Nano Materials, 2022, 5(12), 18811.
84 Nejand B A, Nazari P, Gharibzadeh S, et al. Chemical Communications, 2017, 53(4), 747.
85 Feleki B T, Chandrashekar S, Bouwer R K, et al. Solar RRL, 2020, 4(11), 2000385.
86 Kumar S, Palariya A K, Mohapatra A A, et al. In: Conference Record of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021, pp, 0939.
87 Wu Z, Li P, Zhang Y, et al. Small Methods, 2018, 2(7), 1800031.
88 Kim, Dong, Suk, et al. Journal of Materials Chemistry A, 2015, 3(8), 4129.
89 Lee M, Ko Y, Min B. K, et al. ChemSusChem, 2015, 9(1), 31.
90 Wang X, Li Z, Xu W, et al. Nano Energy, 2015, 11, 728.
91 Xiao Y, Han G, Zhou H, et al. RSC advances, 2016, 6(4), 2778.
92 Choi J S, Jang Y W, Kim U, et al. Advanced Energy Materials, 2022, 12(33), 2201520.
93 Kim M, Kang T W, Kim S H, et al. Solar Energy Materials and Solar Cells, 2019, 191, 55.
94 Burst J M, Rance W L, Meysing D M, et al. In: Conference Record of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, pp, 1589.
95 Mujahid M, Chen C, Hu W, et al. Solar RRL, 2020, 4(8), 1900556.
96 Gao L, Chao L, Hou M, et al. npj Flexible Electronics, 2019, 3(1), 4.
97 Li H, Li X, Wang W, et al. Solar RRL, 2019, 3(3), 1800317.
98 Das S, Yang B, Gu G, et al. ACS Photonics, 2015, 2(6), 680.
99 Rana P J S, Febriansyah B, Koh T M, et al. Advanced Functional Materials, 2022, 32(22), 2113026.
100 Tu Y, Ye J, Yang G Zang Y, et al. Journal of Alloys and Compounds, 2023, 942, 169104.
101 Wan Z, Xu M, Fu Z, et al. Frontiers of Optoelectronics, 2019, 12, 334.
102 Kim Y Y, Yang T Y, Suhonen R, et al. Advanced Science, 2019, 6(7), 1802094.
103 Wu R, Wang C, Jiang M, et al. Journal of Renewable and Sustainable Energy, 2021, 13(1), 012701.
104 Park J, Shin K, Lee C. International Journal of Precision Engineering and Manufacturing, 2016, 17, 537.
105 Søndergaard R R, Hösel M, Krebs F C, et al. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(1), 16.
106 Deng Y, Zheng X, Bai Y, et al. Nature Energy, 2018, 3(7), 560.
107 Zhu H, Shao B, Yin J, et al. Advanced Materials, 2023, 2306466.
108 Søndergaard R R, Hösel M, Angmo, D, et al. Materials Today, 2012, 15(1-2), 36.
109 Patidar R, Burkitt D, Hooper K, et al. Materials Today Communications, 2020, 22, 100808.
110 Sangale S S, Kwon S N, Patil P, et al. Advanced Energy Materials, 2023, 13(33), 2300537.
111 Vesce L, Stefanelli M, Rossi F, et al. Progress in Photovoltaics: Research and Applications, 2023, 32(2), 115.
112 Xu M, Ji W, Sheng Y, et al. Nano Energy, 2020, 74, 104842.
113 Wang Z, Guo J, Pan Y, et al. Energy & Environmental Materials, 2023, e12592.
114 Chen C, Chen J, Han H, et al. Nature, 2022, 612(7939), 266.
115 Changshun C, Chenxin R, Chunyu G, et al. Advanced Energy Materials, 2023, 13(46), 202302654,
116 Zhong Y M R, Li J, Tang MC, et al. ACS Energy Letters, 2018, 3(5), 1078.
117 Tang M C, Fan Y, Barrit D, et al. Journal of Materials Chemistry A, 2020, 8(3), 1095.
118 Fan Y, Fang J, Chang X, et al. Joule, 2019, 3(10), 2485.
119 Whitaker JB K. D, Larson BW, et al. Sustainable Energy & Fuels, 2018, 2(11), 2442.
120 Gao L, Huang K, Long C, et al. Applied Physics A, 2020, 126, 1.
121 Li J, Dagar J, Shargaieva O, et al. Advanced Energy Materials, 2021, 11(10), 2003460.
122 Li C, Yin, J, Chen, R, et al. Journal of the American Chemical Society, 2019, 141(15), 6345.
123 Wang Z, Zeng L, Zhang C, et al. Advanced Functional Materials, 2020, 30(32), 2001240.
124 Liang Q, Liu K, Sun M, et al. Advanced Materials, 2022, 34(16), 2200276.
125 Zhang Z, Xu C, Wang D, et al. Journal of Materials Science:Materials in Electronics, 2022, 33(6), 3091.
126 Yang Z, Zhang W, Wu S, et al. Science Advances, 2021, 7(18), eabg3749.
127 Li J, Dagar J, Shargaieva O, et al. Advanced Energy Materials, 2023, 13(33), 2203898.
128 Chen K, Zhang Z, Liu J, et al. Advanced Materials Interfaces, 2022, 9(13), 2100395.
129 Bisconti F, Giuri A, Suhonen R, et al. Cell Reports Physical Science, 2021, 2(11), 100639.
130 Wang F, Shi, X, Yu, H, et al. Small, 2023, 2306425.
131 Yang M, Li, Z, Reese, M. O, et al. Nature Energy, 2017, 2(5), 1.
132 Ham D S, Choi W J, Yun H, et al. ACS Applied Energy Materials, 2021, 4(8), 7611.
133 Kim Y Y, Yang T Y, Suhonen R, et al. Advanced Science, 2019, 6(7), 1802094.
134 Razza S, Di Giacomo F, Matteocci F, et al. Journal of Power Sources, 2015, 277, 286.
135 Hu H, Ren Z, Fong P W, et al. Advanced Functional Materials, 2019, 29(25), 1900092.
136 Kim JE J Y, Heo YJ, et al. Solar Energy Materials and Solar Cells, 2018, 179, 80.
137 Fong P W K, Hu H, Ren Z, et al. Advanced Science, 2021, 8(6), 2003359.
138 Fievez M, Rana P J S, Koh T M, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111189.
139 Bishop J E, Smith J A. and Lidzey D G. Applied Materials & Interfaces, 2020, 12(43), 48237.
140 Park M, Cho W, Lee G. et al. Small, 2019, 15(1), 1804005.
141 Wei Z, Chen H, Yan K, et al. Angewandte Chemie International Edition, 2014, 53(48), 13239.
142 Mathies F, Eggers H, Richards B S, et al. ACS Applied Energy Materials, 2018, 1(5), 1834.
143 Gheno A, Huang Y, Bouclé J, et al. Solar RRL, 2018, 2(11), 1800191.
144 Bishop J E, Routledge T J and Lidzey D G. The Journal of Physical Chemistry Letters, 2018, 9(8), 1977.
145 Thornber T, Game O S, Cassella E J, et al. ACS Applied Materials & Interfaces, 2022, 14(33), 37587.
146 Yu X, Li J, Mo Y, et al. Journal of Energy Chemistry, 2021, 67, 201.
147 Chalkias D A, Mourtzikou A, Katsagounos G, et al. Small Methods, 2023, 7(10), 2300664.
148 Huang H, Shi J, Zhu L, et al. Nano Energy, 2016, 27, 352.
149 Joao S, Sarallah H, Pieter V, et al. ACS Applied Energy Materials, 2023, 6(14), 7363.
150 Cai H, Liang X, Ye X, et al. ACS Applied Energy Materials, 2020, 3(10), 9696.
151 Li X, Bi D, Yi C, et al. Science, 2016, 353(6294), 58.
152 Cassella E J, Spooner E L, Thornber T, et al. Advanced Science, 2022, 9(14), 2104848.
153 Bishop J E, Smith J A, Greenland C, et al. ACS Applied Materials & Interfaces, 2018, 10(46), 39428.
154 Yu Y T, Yang S H, Chou L H, et al. ACS Applied Energy Materials, 2021, 4(6), 5466.
155 Mathies F, Abzieher T, Hochstuhl A, et al. Journal of Materials Che-mistry A, 2016, 4(48), 19207.
156 Liang C, Li P, Gu H, et al. Solar RRL, 2018, 2(2), 1700217.
[1] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[2] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[6] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[7] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[8] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[9] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[10] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[11] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[12] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[13] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[14] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[15] 崔介东, 曹欣, 石丽芬, 仲召进, 高强. 液晶显示屏用玻璃结构与性能[J]. 材料导报, 2021, 35(z2): 107-109.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed