Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24010233-12    https://doi.org/10.11896/cldb.24010233
  无机非金属及其复合材料 |
SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用
陈浩霖1,2, 赵佳薇1,2, 张俊豪1,2, 于博1,2, 张强飞1,2, 罗倪1,*, 刘振国1,2,*
1 西北工业大学宁波研究院,浙江 宁波 315000
2 西北工业大学柔性电子研究院,西安 710000
Applications of Self-assembled Monolayers for Interface Engineering of n-i-p Perovskite Solar Cells
CHEN Haolin1,2, ZHAO Jiawei1,2, ZHANG Junhao1,2, YU Bo1,2, ZHANG Qiangfei1,2, LUO Ni1,*, LIU Zhenguo1,2,*
1 Ningbo Institute of Northwestern Polytechnical University, Ningbo 315000, Zhejiang, China
2 Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710000, China
下载:  全 文 ( PDF ) ( 20162KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳能电池(PSCs)因其优异的光电性能,被誉为极具发展前景的第三代太阳能电池。然而,PSCs各功能层界面处的非辐射复合影响着器件的光电性能和稳定性。自组装单分子层(SAMs)作为抑制器件界面非辐射复合的界面工程材料,在制备高效稳定PSCs的研究中取得了实际效果。因此,本综述总结了SAMs在n-i-p型PSCs界面工程中的应用,并对非辐射复合路径和SAMs进行介绍。最后,基于当前SAMs在PSCs中的研究趋势作出展望,助力PSCs技术的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈浩霖
赵佳薇
张俊豪
于博
张强飞
罗倪
刘振国
关键词:  钙钛矿太阳能电池  非辐射复合  自组装单分子层  界面工程    
Abstract: Perovskite solar cells (PSCs) are considered as the promising third generation solar cells due to their excellent photoelectric performance. However, the non-radiative recombination at the interfaces of the functional layers of PSCs affects the photoelectric performance and stability of the devices. Self-assembled monolayers (SAMs), as interface engineering materials to suppress non-radiative recombination at the device interfaces, have achieved practical results in fabricating highly efficient and stable PSCs. Therefore, this reviews summarizes the application of SAMs in the interface engineering of n-i-p PSCs, and also introduces non-radiative recombination pathways and SAMs. Finally, based on the current research trends of SAMs in PSCs, an outlook is made to facilitate the further development of PSCs technology.
Key words:  perovskite solar cells    non-radiative recombination    self-assembled monolayers    interface engineering
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TB34  
基金资助: 宁波市重点研发计划(2023Z151);工业和信息化部高质量发展专项(TC220A04A-206);浙江省“尖兵”“领雁”研发攻关计划项目(2024C01251(SD2))
通讯作者:  *罗倪,工学博士,现为西北工业大学宁波研究院博士后,目前主要从事钙钛矿太阳能电池、电子浆料和发光材料的研究。luoni0515@163.com
刘振国,西北工业大学宁波研究院研究员,主要研究领域为功能分子树脂合成、配方优化、特种高分子薄膜材料,以及高分子高性能复合材料的开发和应用,已掌握了相关高分子特种材料的核心关键技术。iamzgliu@nwpu.edu.cn   
作者简介:  陈浩霖,西北工业大学柔性电子研究院硕士研究生,在刘振国研究员的指导下进行研究。目前主要研究领域为钙钛矿太阳能电池。
引用本文:    
陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
CHEN Haolin, ZHAO Jiawei, ZHANG Junhao, YU Bo, ZHANG Qiangfei, LUO Ni, LIU Zhenguo. Applications of Self-assembled Monolayers for Interface Engineering of n-i-p Perovskite Solar Cells. Materials Reports, 2025, 39(5): 24010233-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010233  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24010233
1 Wang K, Zheng L Y, Hou Y C, et al. Joule, 2022, 6(4), 756.
2 Liu W Z, Liu Y J, Yang Z Q, et al. Nature, 2023, 617(7962), 717.
3 Rajagopal A, Yao K, Jen A K Y. Advanced Materials, 2018, 30(32), 1800455.
4 Ramanujam J, Singh U P. Energy & Environmental Science, 2017, 10(6), 1306.
5 Polman A, Knight M, Garnett E C, et al. Science, 2016, 352(6283), aad4424.
6 Green M A, Emery K, Hishikawa Y, et al. Progress in Photovoltaics, 2015, 23(1), 1.
7 Jeon N J, Noh J H, Yang W S, et al. Nature, 2015, 517(7535), 476.
8 Kenjiro F, Kilho Y, Takao S. Advanced Energy Materials, 2020, 10(25), 2000765.
9 Zhang C Y, Liang S X, Liu W, et al. Nature Energy, 2021, 6(12), 1154.
10 Guo Z C, Wu Z B, Chen Y H, et al. Journal of Materials Chemistry C, 2022, 10(37), 13611.
11 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
12 National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html/ (Accessed 10 January 2024).
13 Ren X G, Wang Z S, Sha W E I, et al. ACS Photonics, 2017, 4(4), 934.
14 Ruhle S. Solar Energy, 2016, 130, 139.
15 Tress W, Marinova N, Inganas O, et al. Advanced Energy Materials, 2015, 5(3), 1400812.
16 Luo D Y, Su R, Zhang W, et al. Nature Reviews Materials, 2020, 5(1), 44.
17 Chen J, Park N G. Advanced Materials, 2019, 31(47), 1803019.
18 Eperon G E, Stone K H, Mundt L E, et al. ACS Energy Letters, 2020, 5(6), 1856.
19 Zhou Y, Jia Y H, Fang H H, et al. Advanced Functional Materials, 2018, 28(35), 1803130.
20 Bu T L, Li J, Lin Q D, et al. Nano Energy, 2020, 75, 104917.
21 Shao Y C, Fang Y J, Li T, et al. Energy & Environmental Science, 2016, 9(5), 1752.
22 Ni Z Y, Bao C X, Liu Y, et al. Science, 2020, 367(6484), 1352.
23 El-Mellouhi F, Marzouk A, Bentria E T, et al. Chemsuschem, 2016, 9(18), 2648.
24 Li X D, Zhang W X, Wang Y C, et al. Nature Communications, 2018, 9, 3806.
25 Wang Y B, Wu T H, Barbaud J, et al. Science, 2019, 365(6454), 687.
26 Zhao Y C, Zhou W K, Tan H R, et al. Journal of Physical Chemistry C, 2017, 121(27), 14517.
27 Li X D, Fu S, Zhang W X, et al. Science Advances, 2020, 6(51), eabd1580.
28 Li X D, Zhang W X, Guo X M, et al. Science, 2022, 375(6579), 434.
29 Shi J J, Li Y M, Li Y S, et al. Joule, 2018, 2(5), 879.
30 Shi J J, Li D M, Luo Y H, et al. Review of Scientific Instruments, 2016, 87(12), 123107.
31 Shi J J, Xu X, Li D M, et al. Small, 2015, 11(21), 2472.
32 Meng L, You J, Guo T F, et al. Accounts of Chemical Research, 2016, 49(1), 155.
33 Li X Q, Li W H, Yang Y J, et al. Solar RRL, 2019, 3(6), 1900029.
34 Li Y H, Lim E L, Xie H B, et al. ACS Photonics, 2021, 8(11), 3185.
35 Zhong M, Chai L, Wang Y J. Applied Surface Science, 2019, 464, 301.
36 Yang Y, Wu L L, Hao X, et al. RSC Advances, 2019, 9(49), 28561.
37 Ma J, Guo X, Zhou L, et al. ACS Applied Energy Materials, 2018, 1(8), 3826.
38 Wu G B, Liang R, Ge M Z, et al. Advanced Materials, 2022, 34(8), 2105635.
39 Wang W W, Su Z H, Sun B, et al. Advanced Materials Interfaces, 2021, 8(1), 2001683.
40 Shi Y F, Zhang H J, Tong X L, et al. Solar RRL, 2021, 5(7), 2100128.
41 Goh C, Scully S R, Mcgehee M D. Journal of Applied Physics, 2007, 101(11), 114503.
42 Zuo L J, Dong S Q, De Marco N, et al. Journal of the American Chemical Society, 2016, 138(48), 15710.
43 Kim S Y, Cho S J, Byeon S E, et al. Advanced Energy Materials, 2020, 10(44), 2002606.
44 Ali F, Roldán-Carmona C, Sohail M, et al. Advanced Energy Materials, 2020, 10(48), 2002989.
45 Choi K, Choi H, Min J, et al. Solar RRL, 2020, 4(2), 1900251.
46 Chen J Z, Park N G. ACS Energy Letters, 2020, 5(8), 2742.
47 Pazos-Outón L M, Xiao T P, Yablonovitch E. Journal of Physical Che-mistry Letters, 2018, 9(7), 1703.
48 Guo Z L, Jena A K, Kim G M, et al. Energy & Environmental Science, 2022, 15(8), 3171.
49 Huang J, Yuan Y, Shao Y, et al. Nature Reviews Materials, 2017, 2(7), 17042.
50 Dequilettes D W, Vorpahl S M, Stranks S D, et al. Science, 2015, 348(6235), 683.
51 Wright A D, Milot R L, Eperon G E, et al. Advanced Functional Materials, 2017, 27(29), 1700860.
52 De Wolf S, Holovsky J, Moon S J, et al. Journal of Physical Chemistry Letters, 2014, 5(6), 1035.
53 Ugur E, Ledinsky M, Allen T G, et al. Journal of Physical Chemistry Letters, 2022, 13(33), 7702.
54 Du T, Kim J, Ngiam J, et al. Advanced Functional Materials, 2018, 28(32), 1801808.
55 Aydin E, De Bastiani M, De Wolf S. Advanced Materials, 2019, 31(25), 1900428.
56 Ran C X, Xu J T, Gao W Y, et al. Chemical Society Reviews, 2018, 47(12), 4581.
57 Yin W J, Shi T T, Yan Y F. Advanced Materials, 2014, 26(27), 4653.
58 Ball J M, Petrozza A. Nature Energy, 2016, 1, 1.
59 Shao Y H, Xiao Z G, Bi C, et al. Nature Communications, 2014, 5, 5784.
60 Wu N D, Wu Y L, Walter D, et al. Energy Technology, 2017, 5(10), 1827.
61 Castro-Méndez A F, Hidalgo J, Correa-Baena J P. Advanced Energy Materials, 2019, 9(38), 1901489.
62 Guo S S, Liu K K, Rao L, et al. Chinese Journal of Chemistry, 2023, 41(5), 599.
63 Eperon G E, Moerman D, Ginger D S. ACS Nano, 2016, 10(11), 10258.
64 Wolff C M, Zu F, Paulke A, et al. Advanced Materials, 2017, 29(28), 1700159.
65 Wang S, Zhu Y, Sun W H, et al. Solar Energy, 2018, 176, 118.
66 Arora N, Dar M I, Hinderhofer A, et al. Science, 2017, 358(6364), 768.
67 Stolterfoht M, Caprioglio P, Wolff C M, et al. Energy & Environmental Science, 2019, 12(9), 2778.
68 Bi C, Wang Q, Shao Y C, et al. Nature Communications, 2015, 6, 7747
69 Love J C, Estroff L A, Kriebel J K, et al. Chemical Reviews, 2005, 105(4), 1103.
70 Heo D Y, Jang W J, Kim S Y. Materials Today Chemistry, 2022, 26, 101224.
71 Li B, Chen Y, Liang Z, et al. RSC Advances, 2015, 5(114), 94290.
72 Yang G, Wang C, Lei H, et al. Journal of Materials Chemistry A, 2017, 5(4), 1658.
73 Li Z, Sun X, Zheng X, et al. Science, 2023, 382(6668), 284.
74 Zhang S, Ye F, Wang X, et al. Science, 2023, 380(6643), 404.
75 Yu S, Xiong Z, Zhou H, et al. Science, 2023, 382(6677), 1399.
76 Han F, Tu Z, Wan Z, et al. Applied Surface Science, 2018, 462, 517.
77 Liu K, Chen S, Wu J, et al. Energy & Environmental Science, 2018, 11(12), 3463.
78 Chang C Y, Chang Y C, Huang W K, et al. Journal of Materials Chemistry A, 2016, 4(20), 7903-7913.
79 Bai Y, Chen H, Xiao S, et al. Advanced Functional Materials, 2016, 26(17), 2950.
80 Gu Z, Zuo L, Larsen-Olsen T T, et al. Journal of Materials Chemistry A, 2015, 3(48), 24254.
81 Liu X, Tsai K W, Zhu Z, et al. Advanced Materials Interfaces, 2016, 3(13), 1600122.
82 Liu J, De Bastiani M, Aydin E, et al. Science, 2022, 377(6603), 302.
83 Park S M, Wei M, Xu J, et al. Science, 2023, 381(6654), 209.
84 Ambrosio F, Martsinovich N, Troisi A. Journal of Physical Chemistry Letters, 2012, 3(11), 1531.
85 Kong X, Li Z, Jiang Y, et al. Surfaces and Interfaces, 2021, 25, 101163.
86 Zheng X, Hou Y, Bao C, et al. Nature Energy, 2020, 5(2), 131.
87 Sung S J, Im J, Kim G, et al. Advanced Energy Materials, 2022, 12(27), 2200758.
88 Philippe B, Saliba M, Correa-Baena J P, et al. Chemistry of Materials, 2017, 29(8), 3589.
89 Wang Q, Chueh C C, Zhao T, et al. Chemsuschem, 2017, 10(19), 3794.
90 Zuo L, Chen Q, De Marco N, et al. Nano Letters, 2017, 17(1), 269.
91 Canil L, Cramer T, Fraboni B, et al. Energy & Environmental Science, 2021, 14(3), 1429.
92 Han J, Kwon H, Kim E, et al. Journal of Materials Chemistry A, 2020, 8(4), 2105.
93 Li E P, Liu C, Lin H Z, et al. Advanced Functional Materials, 2021, 31(35), 2103847.
94 Chen D H, Wu H K Y, Naderi-Gohar S, et al. Journal of Materials Chemistry C, 2014, 2(46), 9941.
95 Park S M, Wei M, Lempesis N, et al. Nature, 2023, 624(7991), 289.
96 Cassella E J, Spooner E L K, Thornber T, et al. Advanced Science, 2022, 9(14), 2104848.
97 Bietsch A, Hegner M, Lang H P, et al. Langmuir, 2004, 20(12), 5119.
98 Wu J H, Cui Y Q, Yu B C, et al. Advanced Functional Materials, 2019, 29(49), 1905336.
99 Smith D L, Hoffman D W. Physics Today, 1996, 49(4), 60.
100 Yang Z, Dou J J, Wang M Q. Solar RRL, 2018, 2(12), 1800177.
101 Lin L J, Yang Z H, Jiang E S, et al. ACS Applied Energy Materials, 2019, 2(10), 7062.
102 Chueh C C, Li C Z, Jen A K Y. Energy & Environmental Science, 2015, 8(4), 1160.
103 Hu Q, Wu J, Jiang C, et al. ACS Nano, 2014, 8(10), 10161.
104 Zhang T, He Q Q, Yu J W, et al. Nano Energy, 2022, 104, 107918.
105 Yao Y G, Cheng C D, Zhang C Y, et al. Advanced Materials, 2022, 34(44), 2203794.
106 Kim J H, Chueh C C, Williams S T, et al. Nanoscale, 2015, 7(41), 17343.
107 Xie J S, Yu X G, Huang J B, et al. Advanced Science, 2017, 4(8), 1700018.
108 Zou J Y, Li C Z, Chang C Y, et al. Advanced Materials, 2014, 26(22), 3618.
109 Lee I, Lee J L. Journal of Photonics for Energy, 2015, 5(1), 057609.
110 Kang H, Jung S, Jeong S, et al. Nature Communications, 2015, 6, 6503.
111 Chang C Y, Chang Y C, Huang W K, et al. Journal of Materials Che-mistry A, 2016, 4(20), 7903.
112 Sun X, Deng X, Li Z, et al. Advanced Science, 2020, 7(13), 1903331.
113 Baena J P C, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928.
114 Liu K, Chen S, Wu J H, et al. Energy & Environmental Science, 2018, 11(12), 3463.
115 Chen P, Yin X T, Que M D, et al. Journal of Materials Chemistry A, 2017, 5(20), 9641.
116 Chen J, Zhao X, Kim S G, et al. Advanced Materials, 2019, 31(39), 1902902.
117 Dai Z, Yadavalli S K, Chen M, et al. Science, 2021, 372(6542), 618.
118 Liu Z, Qiu L, Ono L K, et al. Nature Energy, 2020, 5(8), 596.
119 Chen B, Rudd P N, Yang S, et al. Chemical Society Reviews, 2019, 48(14), 3842.
120 Lee J W, Bae S H, De Marco N, et al. Materials Today Energy, 2018, 7, 149.
121 Yin W J, Chen H, Shi T, et al. Advanced Energy Materials, 2015, 1(6), 1500044.
122 Rong Y G, Hu Y, Mei A Y, et al. Science, 2018, 361(6408), eaat8235.
123 Fu Q X, Tang X L, Huang B, et al. Advanced Science, 2018, 5(5), 1700387.
124 Abate A, Saliba M, Hollman D J, et al. Nano Letters, 2014, 14(6), 3247.
125 Zhong H, Jia Z Z, Shen J L, et al. Applied Surface Science, 2022, 602, 154365.
126 Aristidou N, Eames C, Sanchez-Molina I, et al. Nature Communications, 2017, 8, 15218.
127 Chen H N, Yang S H. Advanced Materials, 2017, 29(24), 1603994.
128 Zhang X, Gao N T, Li Y Z, et al. ACS Applied Energy Materials, 2020, 3(8), 7832.
129 Chen J, Lee D, Park N G. ACS Applied Materials & Interfaces, 2017, 9(41), 36338.
130 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10(6), 6306.
131 Zhang X, Yang J J, Xie L, et al. Dyes and Pigments, 2021, 186, 109024.
132 Park N G. Journal of Physical Chemistry Letters, 2013, 4(15), 2423.
133 Wang G Q, Liu J Q, Chen K, et al. Journal of Colloid and Interface Science, 2019, 555, 180.
134 Dong C, Han X, Zhao Y, et al. Solar RRL, 2018, 2(9), 1800139.
135 Sun H R, Zhang J, Gan X L, et al. Advanced Energy Materials, 2019, 9(25), 1900896.
136 Yan Z L, Wang D, Jing Y, et al. Chemical Engineering Journal, 2022, 433, 134611.
137 Zhang G Z, Xie P F, Huang Z S, et al. Advanced Functional Materials, 2021, 31(19), 2011187.
138 Huang C, Lin P, Fu N Q, et al. Chemical Communications, 2019, 55(19), 2777.
139 Guo Q, Zhou C Y, Ma Z B, et al. Advanced Materials, 2019, 31(50), 1901997.
140 Furer S O, Rietwyk K J, Pulvirenti F, et al. ACS Applied Energy Materials, 2023, 6(2), 667.
141 Ke W J, Fang G J, Wan J W, et al. Nature Communications, 2015, 6, 6700.
142 Zhao Z R, Sun W H, Li Y L, et al. Journal of Materials Chemistry A, 2017, 5(10), 4756.
143 Fu N Q, Huang C, Lin P, et al. Journal of Materials Chemistry A, 2018, 6(19), 8886.
144 Cheng H L, Li Y R, Zhang M R, et al. Chemsuschem, 2020, 13(10), 2779.
145 Liu D Y, Yang J L, Kelly T L. Journal of the American Chemical Society, 2014, 136(49), 17116.
146 Xu X B, Chen Q, Hong Z R, et al. Nano Letters, 2015, 15(10), 6514.
147 Zhao T, Chueh C C, Chen Q, et al. ACS Energy Letters, 2016, 1(4), 757.
148 Huang S, Dong Q S, Lu Y, et al. Chemical Engineering Journal, 2021, 422, 130001.
149 Sui M R, Li S P, Gu X Q. Optoelectronics Letters, 2019, 15(2), 117.
150 Cassella E J, Spooner E L K, Smith J A, et al. Advanced Energy Materials, 2023, 13(11), 2203468.
151 Dai Z H, Li S R, Liu X, et al. Advanced Materials, 2022, 34(47), 2205301.
152 Zhu C, Niu X X, Fu Y H, et al. Nature Communications, 2019, 10, 815.
153 Uchida J, Soberats B, Gupta M, et al. Advanced Materials, 2022, 34(23), 2109063.
[1] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[2] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[5] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[6] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[7] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[8] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[9] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[10] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[11] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[12] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[13] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[14] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[15] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed