Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24010176-4    https://doi.org/10.11896/cldb.24010176
  无机非金属及其复合材料 |
锰气相催化多晶金刚石表面原位石墨烯构筑研究
吴国栋1,2, 张文1,*, 伏鑫1,2, 刘辉强2, 汪建3, 王兵2, 熊鹰1,2,*
1 西南科技大学环境友好能源材料国家重点实验室,四川 绵阳 621010
2 西南科技大学材料与化学学院,四川 绵阳 621010
3 西南科技大学数理学院,四川 绵阳 621010
In Situ Fabrication of Graphene on Polycrystalline Diamond Surface Vapor-Phase-catalyzed by Manganese
WU Guodong1,2, ZHANG Wen1,*, FU Xin1,2, LIU Huiqiang2, WANG Jian3, WANG Bing2, XIONG Ying1,2,*
1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
3 School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 13360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金刚石和石墨烯均具有十分优异的物化性质,结合形成的石墨烯-金刚石异质结可充分发挥二者优异性能,引起了广泛的关注。在制备石墨烯-金刚石异质结器件时,传统转移法、金属原位催化法等制备方法都存在步骤复杂、成本较高、石墨烯层覆盖率低且结晶质量较差等缺点,严重妨碍了这种全碳器件的应用。本工作开发了一种金刚石表面原位石墨烯构筑的新方法,采用金属锰气相催化多晶金刚石,实现了金刚石表面原位石墨烯生长。研究结果表明:金属锰气相状态对多晶金刚石具有较强的催化效果,生成的石墨烯层覆盖率高、表面均匀。这种新型的金属锰气相催化法步骤简单,成本较低,可一步完成。本文的研究为在金刚石表面原位生长高质量石墨烯提供了新的技术路线,为制备高性能石墨烯-金刚石异质结全碳器件提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴国栋
张文
伏鑫
刘辉强
汪建
王兵
熊鹰
关键词:  石墨烯-金刚石异质结  全碳器件  锰气相催化  原位生长    
Abstract: Diamond and graphene both have excellent physical and chemical properties. The combination of them to form graphene-diamond heterojunction can give full play to the excellent properties of both, which has have attracted numerous attentions. In the preparation of graphene-diamond heterojunction devices, the conventional methods, such as transfer method and metal in situ catalyzed method, have the disadvantages of complicated steps, high cost, incomplete graphene coverage and poor crystallographic quality, which seriously hinder the application of such all-carbon devices. In this paper, a new method of in-situ fabrication of graphene on diamond surface was developed, i.e., polycrystalline diamond was catalyzed by manganese vapor to achieve the in-situ growth of graphene on the polycrystalline diamond surface. The results show that the manganese vapor phase has a strong catalytic effect on polycrystalline diamond surface, and the graphene layer generated by this method has high coverage and uniform surface. This novel manganese vapor catalysis method is simple, low-cost and can be accomplished in one step. In this paper, we provide a new technical route for the in-situ growth of high-quality graphene on the diamond surface, and a new idea for the preparation of high performance graphene-diamond heterojunction all-carbon devices.
Key words:  graphene-diamond heterojunction    all-carbon devices    manganese vapor catalysis    in situ growth
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  O485  
基金资助: 四川省自然科学基金(2022NSFSC1813);国家自然科学基金(62374140);四川省科技计划(2023NSFSC1990);西南科技大学博士基金(19zx7127)
通讯作者:  *张文,西南科技大学环境友好能源材料国家重点实验室副教授、硕士研究生导师。目前主要从事金刚石、石墨烯薄膜材料制备及应用等方面的研究工作。zhangwenzw@swust.edu.cn
熊鹰,教授、博士研究生导师。目前主要从事CVD金刚石薄膜功能性开发等方面的研究工作。xiongying@swust.edu.cn   
作者简介:  吴国栋,西南科技大学材料与化学学院硕士研究生,在张文副教授的指导下进行研究。目前主要研究领域为金刚石表面原位石墨烯构筑新方法。
引用本文:    
吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
WU Guodong, ZHANG Wen, FU Xin, LIU Huiqiang, WANG Jian, WANG Bing, XIONG Ying. In Situ Fabrication of Graphene on Polycrystalline Diamond Surface Vapor-Phase-catalyzed by Manganese. Materials Reports, 2025, 39(5): 24010176-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010176  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24010176
1 Sang M, Shin J, Kim K, et al. Nanomaterials, 2019, 9, 375.
2 Wu S X, He Q Y, Tan C L, et al. Small, 2013, 9(8), 1160.
3 Fujimoto Y. Modern Physics Letters B, 2021, 35, 2130001.
4 Yu J, Liu G, Sumant A V, et al. Nano Letters, 2012, 12, 1603.
5 Wort C J H, Balmer R S. Materials Today, 2008, 11, 22.
6 Wu Y Z, Jelfzko F, Plenio M B, et al. Angewandte Chemie-International Edition, 2016, 55, 6586.
7 Millan J, Godignon P, Perpina X, et al. IEEE Transactions on Power Electronics, 2014, 29(5), 2155.
8 Yuan Q, Lin C-T, Chee K W A. APL Materials, 2019, 7, 30901.
9 Rizzo D J, Veber G, Cao T, et al. Nature, 2018, 560, 204.
10 Xu X, Liu C, Sun Z, et al. Chemical Society Reviews, 2018, 47, 3099.
11 Freitag M, Steiner M, Martin Y, et al. Nano Letters, 2009, 9(5), 1883.
12 Zhao F, Vrajitoarea A, Jiang Q, et al. Scientific Reports, 2015, 5, 13771.
13 Mirabedini P S, Debnath B, Neupane M R, et al. Applied Physics Letters, 2020, 117, 121901.
14 Asad M, MajdiS, Vorobiev A, et al. IEEE Electroon Device Letters, 2022, 43(2), 300.
15 Ueda K, Mizuno Y, Asano H. Applied Physics Letters, 2020, 117, 092103.
16 Mizuno Y, Ito Y, Ueda K. Carbon, 2021, 182, 669.
17 Wang S, Bqi Q, Chen S. Crystal Research and Technology, 2023, 2300122.
18 Ueda K, Aichi S, Asano H. Diamond and Related Materials, 2016, 63, 148.
19 Kanada S, Nagai M, Ito S, et al. Diamond and Related Materials, 2017, 75, 105.
20 Shen B, Ji Z, Lin Q, et al. Chemistry of Materials, 2022, 34, 3941.
21 Tulić S, Waitz T, Čaolov ová M, et al. Carbon, 2021, 185, 300.
22 Tulić S, Waitz T, Čaolov ová M, et al. ACS Nano, 2019, 13, 4621.
23 Bakharev P V, Huang M, Saxena M, et al. Nature Nanotechnology, 2020, 15, 59.
24 Okpalugo T I T, Papakonstantinou P, Murphy, et al. Carbon, 2005, 43, 153.
25 Habibi A, Khoie S M M, Mahboubi F, et al. Surface & Coatings Technology, 2017, 309, 945.
26 Malard L M, Pimenta M A, Dresselhaus G, et al. Physics Reports, 2009, 473, 51.
27 Yavari F, Kritzinger C, Gaire C, et al. Small, 2010, 6(22), 2535.
28 Hu W, Li Z Y, Yanga J L. The Journal of Chemical Physics, 2013, 138, 054701.
29 Gui Q Z, Wang Z, Cheng C M, et al. Applied Physics Letters, 2022, 121, 211601.
[1] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[2] 赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed