Applications of Self-assembled Monolayers for Interface Engineering of n-i-p Perovskite Solar Cells
CHEN Haolin1,2, ZHAO Jiawei1,2, ZHANG Junhao1,2, YU Bo1,2, ZHANG Qiangfei1,2, LUO Ni1,*, LIU Zhenguo1,2,*
1 Ningbo Institute of Northwestern Polytechnical University, Ningbo 315000, Zhejiang, China 2 Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710000, China
Abstract: Perovskite solar cells (PSCs) are considered as the promising third generation solar cells due to their excellent photoelectric performance. However, the non-radiative recombination at the interfaces of the functional layers of PSCs affects the photoelectric performance and stability of the devices. Self-assembled monolayers (SAMs), as interface engineering materials to suppress non-radiative recombination at the device interfaces, have achieved practical results in fabricating highly efficient and stable PSCs. Therefore, this reviews summarizes the application of SAMs in the interface engineering of n-i-p PSCs, and also introduces non-radiative recombination pathways and SAMs. Finally, based on the current research trends of SAMs in PSCs, an outlook is made to facilitate the further development of PSCs technology.
1 Wang K, Zheng L Y, Hou Y C, et al. Joule, 2022, 6(4), 756. 2 Liu W Z, Liu Y J, Yang Z Q, et al. Nature, 2023, 617(7962), 717. 3 Rajagopal A, Yao K, Jen A K Y. Advanced Materials, 2018, 30(32), 1800455. 4 Ramanujam J, Singh U P. Energy & Environmental Science, 2017, 10(6), 1306. 5 Polman A, Knight M, Garnett E C, et al. Science, 2016, 352(6283), aad4424. 6 Green M A, Emery K, Hishikawa Y, et al. Progress in Photovoltaics, 2015, 23(1), 1. 7 Jeon N J, Noh J H, Yang W S, et al. Nature, 2015, 517(7535), 476. 8 Kenjiro F, Kilho Y, Takao S. Advanced Energy Materials, 2020, 10(25), 2000765. 9 Zhang C Y, Liang S X, Liu W, et al. Nature Energy, 2021, 6(12), 1154. 10 Guo Z C, Wu Z B, Chen Y H, et al. Journal of Materials Chemistry C, 2022, 10(37), 13611. 11 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050. 12 National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html/ (Accessed 10 January 2024). 13 Ren X G, Wang Z S, Sha W E I, et al. ACS Photonics, 2017, 4(4), 934. 14 Ruhle S. Solar Energy, 2016, 130, 139. 15 Tress W, Marinova N, Inganas O, et al. Advanced Energy Materials, 2015, 5(3), 1400812. 16 Luo D Y, Su R, Zhang W, et al. Nature Reviews Materials, 2020, 5(1), 44. 17 Chen J, Park N G. Advanced Materials, 2019, 31(47), 1803019. 18 Eperon G E, Stone K H, Mundt L E, et al. ACS Energy Letters, 2020, 5(6), 1856. 19 Zhou Y, Jia Y H, Fang H H, et al. Advanced Functional Materials, 2018, 28(35), 1803130. 20 Bu T L, Li J, Lin Q D, et al. Nano Energy, 2020, 75, 104917. 21 Shao Y C, Fang Y J, Li T, et al. Energy & Environmental Science, 2016, 9(5), 1752. 22 Ni Z Y, Bao C X, Liu Y, et al. Science, 2020, 367(6484), 1352. 23 El-Mellouhi F, Marzouk A, Bentria E T, et al. Chemsuschem, 2016, 9(18), 2648. 24 Li X D, Zhang W X, Wang Y C, et al. Nature Communications, 2018, 9, 3806. 25 Wang Y B, Wu T H, Barbaud J, et al. Science, 2019, 365(6454), 687. 26 Zhao Y C, Zhou W K, Tan H R, et al. Journal of Physical Chemistry C, 2017, 121(27), 14517. 27 Li X D, Fu S, Zhang W X, et al. Science Advances, 2020, 6(51), eabd1580. 28 Li X D, Zhang W X, Guo X M, et al. Science, 2022, 375(6579), 434. 29 Shi J J, Li Y M, Li Y S, et al. Joule, 2018, 2(5), 879. 30 Shi J J, Li D M, Luo Y H, et al. Review of Scientific Instruments, 2016, 87(12), 123107. 31 Shi J J, Xu X, Li D M, et al. Small, 2015, 11(21), 2472. 32 Meng L, You J, Guo T F, et al. Accounts of Chemical Research, 2016, 49(1), 155. 33 Li X Q, Li W H, Yang Y J, et al. Solar RRL, 2019, 3(6), 1900029. 34 Li Y H, Lim E L, Xie H B, et al. ACS Photonics, 2021, 8(11), 3185. 35 Zhong M, Chai L, Wang Y J. Applied Surface Science, 2019, 464, 301. 36 Yang Y, Wu L L, Hao X, et al. RSC Advances, 2019, 9(49), 28561. 37 Ma J, Guo X, Zhou L, et al. ACS Applied Energy Materials, 2018, 1(8), 3826. 38 Wu G B, Liang R, Ge M Z, et al. Advanced Materials, 2022, 34(8), 2105635. 39 Wang W W, Su Z H, Sun B, et al. Advanced Materials Interfaces, 2021, 8(1), 2001683. 40 Shi Y F, Zhang H J, Tong X L, et al. Solar RRL, 2021, 5(7), 2100128. 41 Goh C, Scully S R, Mcgehee M D. Journal of Applied Physics, 2007, 101(11), 114503. 42 Zuo L J, Dong S Q, De Marco N, et al. Journal of the American Chemical Society, 2016, 138(48), 15710. 43 Kim S Y, Cho S J, Byeon S E, et al. Advanced Energy Materials, 2020, 10(44), 2002606. 44 Ali F, Roldán-Carmona C, Sohail M, et al. Advanced Energy Materials, 2020, 10(48), 2002989. 45 Choi K, Choi H, Min J, et al. Solar RRL, 2020, 4(2), 1900251. 46 Chen J Z, Park N G. ACS Energy Letters, 2020, 5(8), 2742. 47 Pazos-Outón L M, Xiao T P, Yablonovitch E. Journal of Physical Che-mistry Letters, 2018, 9(7), 1703. 48 Guo Z L, Jena A K, Kim G M, et al. Energy & Environmental Science, 2022, 15(8), 3171. 49 Huang J, Yuan Y, Shao Y, et al. Nature Reviews Materials, 2017, 2(7), 17042. 50 Dequilettes D W, Vorpahl S M, Stranks S D, et al. Science, 2015, 348(6235), 683. 51 Wright A D, Milot R L, Eperon G E, et al. Advanced Functional Materials, 2017, 27(29), 1700860. 52 De Wolf S, Holovsky J, Moon S J, et al. Journal of Physical Chemistry Letters, 2014, 5(6), 1035. 53 Ugur E, Ledinsky M, Allen T G, et al. Journal of Physical Chemistry Letters, 2022, 13(33), 7702. 54 Du T, Kim J, Ngiam J, et al. Advanced Functional Materials, 2018, 28(32), 1801808. 55 Aydin E, De Bastiani M, De Wolf S. Advanced Materials, 2019, 31(25), 1900428. 56 Ran C X, Xu J T, Gao W Y, et al. Chemical Society Reviews, 2018, 47(12), 4581. 57 Yin W J, Shi T T, Yan Y F. Advanced Materials, 2014, 26(27), 4653. 58 Ball J M, Petrozza A. Nature Energy, 2016, 1, 1. 59 Shao Y H, Xiao Z G, Bi C, et al. Nature Communications, 2014, 5, 5784. 60 Wu N D, Wu Y L, Walter D, et al. Energy Technology, 2017, 5(10), 1827. 61 Castro-Méndez A F, Hidalgo J, Correa-Baena J P. Advanced Energy Materials, 2019, 9(38), 1901489. 62 Guo S S, Liu K K, Rao L, et al. Chinese Journal of Chemistry, 2023, 41(5), 599. 63 Eperon G E, Moerman D, Ginger D S. ACS Nano, 2016, 10(11), 10258. 64 Wolff C M, Zu F, Paulke A, et al. Advanced Materials, 2017, 29(28), 1700159. 65 Wang S, Zhu Y, Sun W H, et al. Solar Energy, 2018, 176, 118. 66 Arora N, Dar M I, Hinderhofer A, et al. Science, 2017, 358(6364), 768. 67 Stolterfoht M, Caprioglio P, Wolff C M, et al. Energy & Environmental Science, 2019, 12(9), 2778. 68 Bi C, Wang Q, Shao Y C, et al. Nature Communications, 2015, 6, 7747 69 Love J C, Estroff L A, Kriebel J K, et al. Chemical Reviews, 2005, 105(4), 1103. 70 Heo D Y, Jang W J, Kim S Y. Materials Today Chemistry, 2022, 26, 101224. 71 Li B, Chen Y, Liang Z, et al. RSC Advances, 2015, 5(114), 94290. 72 Yang G, Wang C, Lei H, et al. Journal of Materials Chemistry A, 2017, 5(4), 1658. 73 Li Z, Sun X, Zheng X, et al. Science, 2023, 382(6668), 284. 74 Zhang S, Ye F, Wang X, et al. Science, 2023, 380(6643), 404. 75 Yu S, Xiong Z, Zhou H, et al. Science, 2023, 382(6677), 1399. 76 Han F, Tu Z, Wan Z, et al. Applied Surface Science, 2018, 462, 517. 77 Liu K, Chen S, Wu J, et al. Energy & Environmental Science, 2018, 11(12), 3463. 78 Chang C Y, Chang Y C, Huang W K, et al. Journal of Materials Chemistry A, 2016, 4(20), 7903-7913. 79 Bai Y, Chen H, Xiao S, et al. Advanced Functional Materials, 2016, 26(17), 2950. 80 Gu Z, Zuo L, Larsen-Olsen T T, et al. Journal of Materials Chemistry A, 2015, 3(48), 24254. 81 Liu X, Tsai K W, Zhu Z, et al. Advanced Materials Interfaces, 2016, 3(13), 1600122. 82 Liu J, De Bastiani M, Aydin E, et al. Science, 2022, 377(6603), 302. 83 Park S M, Wei M, Xu J, et al. Science, 2023, 381(6654), 209. 84 Ambrosio F, Martsinovich N, Troisi A. Journal of Physical Chemistry Letters, 2012, 3(11), 1531. 85 Kong X, Li Z, Jiang Y, et al. Surfaces and Interfaces, 2021, 25, 101163. 86 Zheng X, Hou Y, Bao C, et al. Nature Energy, 2020, 5(2), 131. 87 Sung S J, Im J, Kim G, et al. Advanced Energy Materials, 2022, 12(27), 2200758. 88 Philippe B, Saliba M, Correa-Baena J P, et al. Chemistry of Materials, 2017, 29(8), 3589. 89 Wang Q, Chueh C C, Zhao T, et al. Chemsuschem, 2017, 10(19), 3794. 90 Zuo L, Chen Q, De Marco N, et al. Nano Letters, 2017, 17(1), 269. 91 Canil L, Cramer T, Fraboni B, et al. Energy & Environmental Science, 2021, 14(3), 1429. 92 Han J, Kwon H, Kim E, et al. Journal of Materials Chemistry A, 2020, 8(4), 2105. 93 Li E P, Liu C, Lin H Z, et al. Advanced Functional Materials, 2021, 31(35), 2103847. 94 Chen D H, Wu H K Y, Naderi-Gohar S, et al. Journal of Materials Chemistry C, 2014, 2(46), 9941. 95 Park S M, Wei M, Lempesis N, et al. Nature, 2023, 624(7991), 289. 96 Cassella E J, Spooner E L K, Thornber T, et al. Advanced Science, 2022, 9(14), 2104848. 97 Bietsch A, Hegner M, Lang H P, et al. Langmuir, 2004, 20(12), 5119. 98 Wu J H, Cui Y Q, Yu B C, et al. Advanced Functional Materials, 2019, 29(49), 1905336. 99 Smith D L, Hoffman D W. Physics Today, 1996, 49(4), 60. 100 Yang Z, Dou J J, Wang M Q. Solar RRL, 2018, 2(12), 1800177. 101 Lin L J, Yang Z H, Jiang E S, et al. ACS Applied Energy Materials, 2019, 2(10), 7062. 102 Chueh C C, Li C Z, Jen A K Y. Energy & Environmental Science, 2015, 8(4), 1160. 103 Hu Q, Wu J, Jiang C, et al. ACS Nano, 2014, 8(10), 10161. 104 Zhang T, He Q Q, Yu J W, et al. Nano Energy, 2022, 104, 107918. 105 Yao Y G, Cheng C D, Zhang C Y, et al. Advanced Materials, 2022, 34(44), 2203794. 106 Kim J H, Chueh C C, Williams S T, et al. Nanoscale, 2015, 7(41), 17343. 107 Xie J S, Yu X G, Huang J B, et al. Advanced Science, 2017, 4(8), 1700018. 108 Zou J Y, Li C Z, Chang C Y, et al. Advanced Materials, 2014, 26(22), 3618. 109 Lee I, Lee J L. Journal of Photonics for Energy, 2015, 5(1), 057609. 110 Kang H, Jung S, Jeong S, et al. Nature Communications, 2015, 6, 6503. 111 Chang C Y, Chang Y C, Huang W K, et al. Journal of Materials Che-mistry A, 2016, 4(20), 7903. 112 Sun X, Deng X, Li Z, et al. Advanced Science, 2020, 7(13), 1903331. 113 Baena J P C, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928. 114 Liu K, Chen S, Wu J H, et al. Energy & Environmental Science, 2018, 11(12), 3463. 115 Chen P, Yin X T, Que M D, et al. Journal of Materials Chemistry A, 2017, 5(20), 9641. 116 Chen J, Zhao X, Kim S G, et al. Advanced Materials, 2019, 31(39), 1902902. 117 Dai Z, Yadavalli S K, Chen M, et al. Science, 2021, 372(6542), 618. 118 Liu Z, Qiu L, Ono L K, et al. Nature Energy, 2020, 5(8), 596. 119 Chen B, Rudd P N, Yang S, et al. Chemical Society Reviews, 2019, 48(14), 3842. 120 Lee J W, Bae S H, De Marco N, et al. Materials Today Energy, 2018, 7, 149. 121 Yin W J, Chen H, Shi T, et al. Advanced Energy Materials, 2015, 1(6), 1500044. 122 Rong Y G, Hu Y, Mei A Y, et al. Science, 2018, 361(6408), eaat8235. 123 Fu Q X, Tang X L, Huang B, et al. Advanced Science, 2018, 5(5), 1700387. 124 Abate A, Saliba M, Hollman D J, et al. Nano Letters, 2014, 14(6), 3247. 125 Zhong H, Jia Z Z, Shen J L, et al. Applied Surface Science, 2022, 602, 154365. 126 Aristidou N, Eames C, Sanchez-Molina I, et al. Nature Communications, 2017, 8, 15218. 127 Chen H N, Yang S H. Advanced Materials, 2017, 29(24), 1603994. 128 Zhang X, Gao N T, Li Y Z, et al. ACS Applied Energy Materials, 2020, 3(8), 7832. 129 Chen J, Lee D, Park N G. ACS Applied Materials & Interfaces, 2017, 9(41), 36338. 130 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10(6), 6306. 131 Zhang X, Yang J J, Xie L, et al. Dyes and Pigments, 2021, 186, 109024. 132 Park N G. Journal of Physical Chemistry Letters, 2013, 4(15), 2423. 133 Wang G Q, Liu J Q, Chen K, et al. Journal of Colloid and Interface Science, 2019, 555, 180. 134 Dong C, Han X, Zhao Y, et al. Solar RRL, 2018, 2(9), 1800139. 135 Sun H R, Zhang J, Gan X L, et al. Advanced Energy Materials, 2019, 9(25), 1900896. 136 Yan Z L, Wang D, Jing Y, et al. Chemical Engineering Journal, 2022, 433, 134611. 137 Zhang G Z, Xie P F, Huang Z S, et al. Advanced Functional Materials, 2021, 31(19), 2011187. 138 Huang C, Lin P, Fu N Q, et al. Chemical Communications, 2019, 55(19), 2777. 139 Guo Q, Zhou C Y, Ma Z B, et al. Advanced Materials, 2019, 31(50), 1901997. 140 Furer S O, Rietwyk K J, Pulvirenti F, et al. ACS Applied Energy Materials, 2023, 6(2), 667. 141 Ke W J, Fang G J, Wan J W, et al. Nature Communications, 2015, 6, 6700. 142 Zhao Z R, Sun W H, Li Y L, et al. Journal of Materials Chemistry A, 2017, 5(10), 4756. 143 Fu N Q, Huang C, Lin P, et al. Journal of Materials Chemistry A, 2018, 6(19), 8886. 144 Cheng H L, Li Y R, Zhang M R, et al. Chemsuschem, 2020, 13(10), 2779. 145 Liu D Y, Yang J L, Kelly T L. Journal of the American Chemical Society, 2014, 136(49), 17116. 146 Xu X B, Chen Q, Hong Z R, et al. Nano Letters, 2015, 15(10), 6514. 147 Zhao T, Chueh C C, Chen Q, et al. ACS Energy Letters, 2016, 1(4), 757. 148 Huang S, Dong Q S, Lu Y, et al. Chemical Engineering Journal, 2021, 422, 130001. 149 Sui M R, Li S P, Gu X Q. Optoelectronics Letters, 2019, 15(2), 117. 150 Cassella E J, Spooner E L K, Smith J A, et al. Advanced Energy Materials, 2023, 13(11), 2203468. 151 Dai Z H, Li S R, Liu X, et al. Advanced Materials, 2022, 34(47), 2205301. 152 Zhu C, Niu X X, Fu Y H, et al. Nature Communications, 2019, 10, 815. 153 Uchida J, Soberats B, Gupta M, et al. Advanced Materials, 2022, 34(23), 2109063.