Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23120228-10    https://doi.org/10.11896/cldb.23120228
  高分子与聚合物基复合材料 |
遇湿粘附多孔止血海绵的设计、制备及性能评价
盖长智1,2, 方辉3, 潘钊1,2,*, 董良1,2,*
1 浙江工业大学材料科学与工程学院,杭州 310014
2 中国科学院杭州医学研究所,杭州 310022
3 安徽医科大学口腔医学院,合肥 230032
Design, Preparation and Performance Evaluation of Porous Wet-Adhesive Hemostasis Sponge
GAI Changzhi1,2, FANG Hui3, PAN Zhao1,2,*, DONG Liang1,2,*
1 School of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
3 Stomatological College, Anhui Medical University, Anhui 230032, China
下载:  全 文 ( PDF ) ( 35335KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 肝脏、肾脏等器官因血管密集、质地脆弱,在受到创伤后出血常难以控制,且组织易二次受创,导致外科止血难度大。无需按压即可遇湿粘附固定,同时实现物理封堵和促进凝血,是应对不可压迫伤口出血的止血材料应具备的关键性能。本工作拟设计并制备一种新型止血材料,取向多孔海绵结合聚合物交联多孔网络,通过冷冻干燥制得遇湿粘附多孔止血海绵。该材料有效整合了取向壳聚糖海绵的快速吸血、凝血能力,疏松多孔粘性基质层的遇湿粘附能力。微观结构分析验证了材料的分层、多孔结构,双层海绵展示出优异的力学性能和生物粘附效果。材料生物相容性良好,高达85%的孔隙率及近500%的采血率赋予材料快速吸血并促进凝血的性能。体外模拟止血实验证实该海绵具有优异的止血效果,在处理肝脏、肾脏等脆弱器官出血的体内环境中具有广阔的应用前景,这项工作也为粘附性止血材料的开发开辟了新的途径和方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盖长智
方辉
潘钊
董良
关键词:  不可压迫伤口止血  物理封堵  促进凝血  止血海绵    
Abstract: Organs such as the liver and kidneys have dense blood vessels and fragile textures, so it is often difficult to control bleeding after trauma, and the tissues are prone to secondary trauma, making surgical hemostasis difficult. Essential characteristics of hemostatic materials designed for non-compressible wounds include the capacity for wet adhesion and fixation without compression, coupled with concurrent physical sealing and facilitation of coagulation. The objective of this study was to engineer a novel hemostatic material, encompassing an oriented porous sponge in conjunction with a polymer cross-linked porous network, culminating in a viscous, double-layered hemostatic sponge produced via lyophilization. This composite material adeptly merges the rapid hemostatic efficacy and coagulative functionality of the oriented chitosan sponge with the enhanced wet-adhesive properties of a porous, viscous matrix. Through microstructural examination, the material’s stratified and porous architecture was authenticated. The double-layered sponge demonstrated superior mechanical robustness and bio-adhesive capabilities. Furthermore, it exhibited commendable biocompatibility, evidenced by a porosity reaching 85% and an impressive blood absorption rate approaching 500%, thereby facilitating expeditious blood uptake and coagulation. In vitro hemostasis simulation experiments have confirmed that the sponge possesses excellent hemostatic effects, showing broad application prospects in the in vivo environment for managing bleeding in delicate organs such as the liver and kidneys. This work also paves new avenues and methods for the development of adhesive hemostatic materials.
Key words:  non-compressible wound hemorrhage control    physical sealing    coagulation hemostasis    hemostasis sponge
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TB332  
  R605.972  
基金资助: 国家自然科学基金青年科学基金(22305254);中国博士后科学基金(2021M703067)
通讯作者:  *潘钊,中国科学院基础医学与肿瘤研究所特聘副研究员。主要从事仿生水凝胶组织修复材料的创新设计与制备、柔性生物电子在组织修复中的应用等方向的研究。panzhao@him.cas.cn
董良,中国科学院杭州医学研究所特聘研究员。主要从事仿生生物材料的功能化设计、生物医学应用与生物效应研究;多功能生物矿化材料的制备及在肿瘤治疗、组织修复、影像诊断、免疫调节中的应用。dongliang@him.cas.cn   
作者简介:  盖长智,现为浙江工业大学材料学院硕士研究生,在董良研究员、潘钊副研究员的指导下进行研究。目前主要研究领域为生物医用材料。
引用本文:    
盖长智, 方辉, 潘钊, 董良. 遇湿粘附多孔止血海绵的设计、制备及性能评价[J]. 材料导报, 2025, 39(5): 23120228-10.
GAI Changzhi, FANG Hui, PAN Zhao, DONG Liang. Design, Preparation and Performance Evaluation of Porous Wet-Adhesive Hemostasis Sponge. Materials Reports, 2025, 39(5): 23120228-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120228  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23120228
1 Behrens A M, Sikorski M J, Kofinas P. Journal of Biomedical Materials Research Part A, 2014, 102(11), 4182.
2 Shi C, Li S, Wang Z, et al. Injury, 2021, 52(7), 1657.
3 Landsman T L, Touchet T, Hasan S M, et al. Acta Biomaterialia, 2017, 47, 91.
4 Liu C, Liu X, Liu C, et al. Biomaterials, 2019, 205, 23.
5 Qi L, Mu L, Guo X, et al. Advanced Functional Materials, 2023, 33(16), 2212231.
6 Chou T C, Fu E, Wu C J, et al. Biochemical and Biophysical Research Communications, 2003, 302(3), 480.
7 Bano I, Arshad M, Yasin T, et al. International Journal of Biological Macromolecules, 2017, 102, 380.
8 Ebrahimi M, Golaghaei A, Mehramizi A, et al. Journal of Research in Medical and Dental Science, 2018, 6, 18.
9 Yang S, Li X, Liu P, et al. ACS Biomaterials Science & Engineering, 2020, 6(8), 4666.
10 Nandi S, Mihalko E, Nellenbach K, et al. Advanced Therapeutics, 2021, 4(5), 2100010.
11 Sekhon U D S, Swingle K, Girish A, et al. Science Translational Medicine, 2022, 14(629), eabb8975.
12 Xie X, Li D, Chen Y, et al. Advanced Healthcare Materials, 2021, 10(20), 2100918.
13 Cui C, Fan C, Wu Y, et al. Advanced Materials, 2019, 31(49), 1905761.
14 Tan H, Jin D, Qu X, et al. Biomaterials, 2019, 192, 392.
15 Han W, Zhou B, Yang K, et al. Bioactive Materials, 2020, 5(4), 768.
16 Fang W, Yang L, Hong L, et al. Carbohydrate Polymers, 2021, 271, 118428.
17 Baghdasarian S, Saleh B, Baidya A, et al. Materials Today Bio, 2022, 13, 100199.
18 Yang Y, Ma Y, Wang J, et al. Carbohydrate Polymers, 2023, 316, 121083.
19 Peng X, Xia X, Xu X, et al. Science Advances, 2021, 7(23), eabe8739.
20 Li Q, Hu E, Yu K, et al. Advanced Functional Materials, 2020, 30(42), 2004153.
21 Bao G, Gao Q, Cau M, et al. Nature Communications, 2022, 13(1), 5035.
22 Zhao X, Guo B, Wu H, et al. Nature Communications, 2018, 9(1), 2784.
23 Peng X, Xu X, Deng Y, et al. Advanced Functional Materials, 2021, 31(33), 2102583.
24 Yuk H, Wu J, Sarrafian T L, et al. Nature Biomedical Engineering, 2021, 5(10), 1131.
25 Hong C, Olsen B D, Hammond P T. Biomaterials, 2022, 283, 121432.
26 Guo B, Dong R, Liang Y, et al. Nature reviews Chemistry, 2021, 5(11), 773.
27 Dong R, Zhang H, Guo B. National Science Review, 2022, 9(11), nwac162.
28 Jiang S J, Wang M H, Wang Z Y, et al. Advanced Functional Materials, 2022, 32(18), 2110931.
29 Nam S, Mooney D. Chemical Reviews, 2021, 121(18), 11336.
30 Masood N, Ahmed R, Tariq M, et al. International Journal of Pharmaceutics, 2019, 559, 23.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
[5] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板S-N曲线模型的综述与评估[J]. 材料导报, 2024, 38(22): 23050190-10.
[7] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[8] 俞朱敏, 李琳, 赵凯, 吴梦悦, 叶常青. 具有光子晶体结构的电致变色器件的研究进展[J]. 材料导报, 2024, 38(21): 23070230-13.
[9] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[10] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[11] 闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
[12] 王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志. 玻璃钢夹砂管涵夹砂层细观断裂数值模拟[J]. 材料导报, 2024, 38(17): 22100284-10.
[13] 罗智涛, 庄淇凯, 李小琪, 李凯, 程小全. 碳泡沫复合材料夹层结构准静态横压性能[J]. 材料导报, 2024, 38(16): 23020256-9.
[14] 姚福林, 褚泽南, 景冲, 赵越, 魏源. 热塑性复合材料大长宽比接头超声波焊接研究进展[J]. 材料导报, 2024, 38(16): 22110069-8.
[15] 谢金梦, 逄显娟, 赵若凡, 刘亚婷, 黄素玲, 王帅, 张永振. 不同摩擦配副对PEEK及CF/PEEK复合材料摩擦学性能的影响[J]. 材料导报, 2024, 38(16): 23030275-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed