Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23040240-6    https://doi.org/10.11896/cldb.23040240
  高分子与聚合物基复合材料 |
喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展
闫帅1, 吕平1, 黄微波1,2,*, 张锐1, 王旭1, 王文斌1, 鞠家辉2
1 青岛理工大学土木工程学院,山东 青岛 266400
2 青岛沙木新材料有限公司,山东 青岛 266109
New Progress in Research on Anti-penetration and Protection Mechanism of Spray Polyurea and Its Fiber Composites
YAN Shuai1, LYU Ping1, HUANG Weibo1,2,*, ZHANG Rui1, WANG Xu1, WANG Wenbin1, JU Jiahui2
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266400, Shandong, China
2 Qingdao Shamu Advanced Material Co., Ltd., Qingdao 266109, Shandong, China
下载:  全 文 ( PDF ) ( 10297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在侵彻体高速冲切行为下,头盔和防弹衣等防护装备产生变形甚至穿透现象,且过往防护装备以金属、陶瓷为主,虽防护效果表现良好,但对人员敏捷性影响较大,因此轻量化成为设计防护装备的重要指标。喷涂聚脲和高性能纤维所具有的轻质高强等特性,足以满足防护基材的要求,因此将喷涂聚脲及纤维作为基材制作防护装备潜力巨大。本文首先从喷涂聚脲微相分离的结构特点入手,讲述分子链上软硬段以及氢键化的存在对材料性能的影响,介绍了喷涂聚脲的动态响应情况,分析认为在宽应变率范围下喷涂聚脲仍能保持性能稳定性。通过弹道实验发现喷涂聚脲受到侵彻体的高速冲切时会从橡胶态转变为玻璃态,对弹道极限具有提升作用;纤维的加入可以优化防护装备的结构整体性,复合材料损伤面积的扩大证明能量耗散水平的提高。最后从软硬段重排结晶、氢键作用等方面归纳分析喷涂聚脲的抗侵彻机理,并指出喷涂聚脲与纤维形成复合材料的重难点和亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫帅
吕平
黄微波
张锐
王旭
王文斌
鞠家辉
关键词:  喷涂聚脲  纤维  复合材料  抗侵彻  防护装备    
Abstract: Under the act of high-speed punching and cutting of the intruder, helmets and bulletproof vests and other protective equipment deformation and even penetration phenomenon, and the past protective equipment to metal, ceramic-based, although good performance in protection, but the greater impact on the agility of personnel, so lightweight has become an important indicator of the design of protective equipment. The properties of spray polyurea and high-performance fibers are light and strong enough to meet the requirements of protective substrates, so the potential of spray polyurea and fibers as substrates for making protective equipment is huge. This paper starts from the structural characteristics of spray polyurea micro-phase separation, and describes the influence of soft and hard segments in the molecular chain and the presence of hydrogen bonding on the material properties. The dynamic response of spray polyurea is introduced, and it is analyzed that the spray polyurea can maintain the performance stability under wide strain rate range. The ballistic experiments show that the sprayed polyurea will change from rubbery state to glassy state when subjected to high-speed punching and cutting by the intruder, which has an increasing effect on the ballistic limit; the addition of fibers can optimize the structural integrity of the protective equipment, and the expansion of the damage area of the composite material proves the increase of the energy dissipation level. Finally, we summarize and analyze the anti-penetration mechanism of sprayed polyurea from the aspects of rearrangement crystallization of soft and hard segments and hydrogen bonding, and point out the important difficulties and urgent problems to be solved in the formation of composite materials between sprayed polyurea and fibers.
Key words:  spray polyurea    fiber    compound material    anti-penetration    protective equipment
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB332  
  TB34  
通讯作者:  *黄微波,通信作者,青岛理工大学土木工程学院教授、博士研究生导师。1986年四川大学高分子材料系本科毕业,1986年至2007年在海洋化工研究院工作,2007年中国海洋大学海洋化学专业博士毕业后到青岛理工大学工作至今。目前主要从事新型功能材料的研究工作。发表论文100余篇,授权专利40多项。huangweibo@qut.edu.cn   
作者简介:  闫帅,2021年6月于哈尔滨理工大学获得工学学士学位。现为青岛理工大学土木工程学院硕士研究生,在黄微波教授的指导下进行研究。目前研究方向为复合材料防护功能研究。
引用本文:    
闫帅, 吕平, 黄微波, 张锐, 王旭, 王文斌, 鞠家辉. 喷涂聚脲及其纤维复合材料的抗侵彻性及防护机理研究新进展[J]. 材料导报, 2024, 38(19): 23040240-6.
YAN Shuai, LYU Ping, HUANG Weibo, ZHANG Rui, WANG Xu, WANG Wenbin, JU Jiahui. New Progress in Research on Anti-penetration and Protection Mechanism of Spray Polyurea and Its Fiber Composites. Materials Reports, 2024, 38(19): 23040240-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040240  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23040240
1 Lyu P, Fang Z Q, Wang X, et al. Materials, 2022, 15(7), 2607.
2 Liu J Y, Dong Y X, An X Y, et al. Defence Technology, 2021, 17(2), 315.
3 Huang W B. Spray polyurea elastomer technology, Chemical Industry Press, China, 2005, pp.17 (in Chinese).
黄微波. 喷涂聚脲弹性体技术, 化学工业出版社, 2005, pp.17.
4 Zhang R, Huang W B, Lyu P, et al. Polymers, 2022, 14(13), 2670.
5 Feng J H, Dong Q, Zhang L C, et al. Chinese Journal of Energetic Materials, 2020, 28(4), 277 (in Chinese).
冯加和, 董奇, 张刘成, 等. 含能材料, 2020, 28(4), 277.
6 Sun F, Qu Y, Xu C. Acta Armamentarii, 2018, 39(11), 2249 (in Chinese).
孙非, 曲一, 徐诚. 兵工学报, 2018, 39(11), 2249.
7 Zhang Q Y, Qin Z G, Yan R S, et al. Composite Structures, 2021, 266, 113806.
8 Shi B. Ordnance Material Science and Engineering, 2021, 44(6), 51 (in Chinese).
师博. 兵器材料科学与工程, 2021, 44(6), 51.
9 Goyal C, Anudeep A V, Sarweswaran R. Materials Today: Proceedings, 2020, 33(7), 4533.
10 Holzworth K, Jia Z, Amirkhizi A V, et al. Polymer, 2013, 54(12), 3079.
11 Li T, Zhang C, Xie Z N, et al. Polymer, 2018, 145, 261.
12 Huang W B, Zhang R, Wang X, et al. Polymers, 2022, 14(17), 3458.
13 Zhang M, Cui Z W, Catherine L B. Journal of Polymer Science Part B: Polymer Physics, 2018, 56(23), 1552.
14 Yildirim E, Yurtsever M. Computational and Theoretical Chemistry, 2014, 1035, 28.
15 Li S J, Yan J, Du S G, et al. Materials Reports, 2020, 34(21), 21205 (in Chinese).
李少杰, 闫军, 杜仕国, 等. 材料导报, 2020, 34(21), 21205.
16 Iqbal N, Tripathi M, Parthasarathy S, et al. ChemistrySelect, 2018, 3(7), 1976.
17 Pangon A, Dillon G P, Runt J. Polymer, 2014, 55(7), 1837.
18 Pang B, Zhang J Z, Pang M L, et al. Polymer Chemistry, 2018, 9(7), 869.
19 Liu M H, Oswald J. Polymer, 2019, 176, 1.
20 Li T, Zheng T, Han J, et al. Polymers, 2019, 11(5), 838.
21 Ramirez B J, Gupta V. International Journal of Mechanical Sciences, 2019, 150, 29.
22 Wang H, Deng X M, Wu H J, et al. Defence Technology, 2019, 15(6), 875.
23 Xiao Y C, Yin J L, Zhang X W, et al. Polymer Testing, 2022, 109, 107531.
24 Do S, Stepp S, Youssef G. Materials Today Communications, 2020, 25, 101464.
25 Miao Y G, Zhang H N, He H, et al. Composite Structures, 2019, 222, 110923.
26 Jia Z J, Wang S, Chen Y X, et al. Acta Armamentarii, 2021, 42(S1), 151 (in Chinese).
贾子健, 王舒, 陈亚旭, 等. 兵工学报, 2021, 42(S1), 151.
27 Wang B, Chen Y S, Xu H F, et al. Protective Engineering, 2018, 40(5), 8 (in Chinese).
王波, 陈艺顺, 许宏发, 等. 防护工程, 2018, 40(5), 8.
28 Yao X H, Zhang L H, Zhang X Q, et al. Acta Aeronautica et Astronautica Sinica, 2015, 36(7), 2236 (in Chinese).
姚小虎, 张龙辉, 张晓晴, 等. 航空学报, 2015, 36(7), 2236.
29 Shahi V, Alizadeh V, Amirkhizi A V. Mechanics of Time-Dependent Materials, 2020, 25(3), 447.
30 Zhang R, Huang W B, Lyu P, et al. Advanced Engineering Sciences, 2022, 54(5), 218 (in Chinese).
张锐, 黄微波, 吕平, 等. 工程科学与技术, 2022, 54(5), 218.
31 Fang Z Q. Study on explosion protection performance of blast mitigation polyurea and its composite coating steel plate. Master's Thesis, Qingdao University of Technology, China, 2022 (in Chinese).
方志强. 抗爆聚脲及其复合涂层钢板爆炸防护性能研究. 硕士学位论文, 青岛理工大学, 2022.
32 Nantasetphong W, Jia Z, Hasan M A, et al. Experimental Mechanics, 2018, 58(8), 1311.
33 Cai J F, Li S J, Yan J, et al. Journal of Ordnance Equipment Engineering, 2021, 42(8), 112 (in Chinese).
蔡军锋, 李少杰, 闫军, 等. 兵器装备工程学报, 2021, 42(8), 112.
34 Li H L, Wang B, Ding S, et al. Journal of Unmanned Undersea Systems, 2022, 30(3), 354 (in Chinese).
李海龙, 王博, 丁松, 等. 水下无人系统学报, 2022, 30(3), 354.
35 Mao L W, Wan C Z, Chen C H, et al. Transactions of Beijing Institute of Technology, 2022, 42(10), 1017 (in Chinese).
毛柳伟, 万昌召, 陈长海, 等. 北京理工大学学报, 2022, 42(10), 1017.
36 Ouyang K F, Yao X, Yang Y, et al. Protective Engineering, 2021, 43(4), 6 (in Chinese).
欧阳科峰, 姚新, 杨阳, 等. 防护工程, 2021, 43(4), 6.
37 Moradi L G, Davidson J S, Dinan R J. Journal of Performance of Constructed Facilities, 2009, 23(2), 72.
38 Zhang Q Y, Jin X Q, Zheng Y X, et al. Engineering Mechanics, 2016, 33(4), 205 (in Chinese).
张青艳, 靳晓庆, 郑宇轩, 等. 工程力学, 2016, 33(4), 205.
39 Roland C M, Fragiadakis D, Gamache R M, et al. Philosophical Magazine, 2013, 93(5), 468.
40 Zhang P, Wang Z J, Zhao P D, et al. Thin-Walled Structures, 2019, 144, 106342.
41 Sun P F, Lyu P, Wang X, et al. New Chemical Materials, 2023, 51(1), 156 (in Chinese).
孙鹏飞, 吕平, 王旭, 等. 化工新型材料, 2023, 51(1), 156.
42 Zhang R, Huang W B, Fang Z Q, et al. Journal of Qingdao University of Technology, 2021, 42(3), 22 (in Chinese).
张锐, 黄微波, 方志强, 等. 青岛理工大学学报, 2021, 42(3), 22.
43 Mateusz B, Joanna A, Adam P, et al. Composites Part B, 2021, 225, 109286.
44 Luo X, Yu K J, Wang M L, et al. New Chemical Materials, 2017, 45(7), 90 (in Chinese).
罗霞, 俞科静, 王梦蕾, 等. 化工新型材料, 2017, 45(7), 90.
45 Sazhenkov N A, Semenov S V, Voronov L V, et al. Procedia Structural Integrity, 2020, 28, 1572.
46 Zheng C Y, Zong C, Zhang D T, et al. Journal of Materials Science and Engineering, 2022, 40(2), 269 (in Chinese).
郑成燕, 宗晟, 张典堂, 等. 材料科学与工程学报, 2022, 40(2), 269.
47 Grujicic M, Entremont B P, Pandurangan B, et al. Journal of Materials Engineering & Performance, 2012, 21(10), 2024.
48 Iqbal N, Tripathi M, Parthasarathy S, et al. RSC Advances, 2016, 6, 109706.
49 Wu G, Wang X, Ji C, et al. Journal of Constructional Steel Research, 2022, 190, 107126.
50 Zhang L, Cheng L Y, Ji C, et al. Initiators & Pyrotechnics, 2022(3), 21 (in Chinese).
张龙, 程良玉, 纪冲, 等. 火工品, 2022(3), 21.
51 Andreas J B. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(3), 328.
52 Hu J Y. Research on low-velocity impact properties and damage mechanism of woven fabric composite. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
胡靖元. 织物复合材料低速冲击特性与损伤机理研究. 硕士学位论文, 哈尔滨工业大学, 2010.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[10] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[11] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[12] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed