Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22110263-9    https://doi.org/10.11896/cldb.22110263
  无机非金属及其复合材料 |
UHPC直拉试验方法与本构关系研究
杨简1,2,*, 李洋1,2, 陈宝春3,4, 徐港1,2, 黄卿维4
1 防灾减灾湖北省重点实验室,湖北 宜昌 443002
2 三峡大学土木与建筑学院,湖北 宜昌 443002
3 福建工程学院土木工程学院,福州 350116
4 福州大学土木工程学院,福州 350108
Study on Uniaxial Tensile Test Method and Constitutive Relationship of UHPC
YANG Jian1,2,*, LI Yang1,2, CHEN Baochun3,4, XU Gang1,2, HUANG Qingwei4
1 Hubei Key Laboratory of Disaster Prevention and Mitigation, Yichang 443002, Hubei, China
2 College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, Hubei, China
3 College of Civil Engineering, Fujian University of Technology, Fuzhou 350116, China
4 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 48898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete,UHPC)单轴拉伸(直拉)试验是分析UHPC抗拉性能和直拉本构关系的基础性试验,经过对其试件形状与尺寸的优化,试验成功率已得到了较大提升。但由于试件连接方式和局部加强方式的差异,各机构试验成功率参差不齐。为进一步保证直拉试验成功率,采用试验研究和数值模拟的方法系统分析了常见的四种试件连接方式和三种试件局部加强方式对试验成功率的影响,比选出最优试验方法。结果表明:面内夹持装置具有连接可靠、操作简单的优点,适合推广。但夹具的尺寸加工误差或微变形可能导致其与试件的接触面变窄、加剧夹持引发的试件应力集中,致使主裂纹位于测距范围之外;试件与夹具的接触区域进行柔性加强(粘贴碳纤维布)和刚性加强(粘贴铝片)均能有效解决上述问题,提高试验成功率。此外,采用比选的直拉试验方法,探究了钢纤维长径比和体积率对UHPC直拉损伤本构关系的影响。通过声发射(Acoustic emission,AE)监测探究了UHPC在直拉荷载作用下的损伤演化规律,利用声发射参数(累积计数比)构建损伤因子,得到了考虑钢纤维影响的UHPC直拉损伤本构关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨简
李洋
陈宝春
徐港
黄卿维
关键词:  超高性能混凝土  直拉试验  连接装置  加强方式  钢纤维特征参数  直拉本构关系    
Abstract: Uniaxial tensile test of ultra-high performance concrete (UHPC) is a basic material test to analyze its tensile properties and tensile constitutive relationship. Through optimization of the shape and size of the specimens, the success rate of the test has been greatly improved. Howe-ver, due to the difference in the connection device and reinforcement method, the success rate of each institution is uneven. In order to further ensure the success rate of the uniaxial tensile test, the influence of four common connection devices and three reinforcement methods on the success rate of the test were systematically analyzed through experimental research and numerical simulation, and the optimal test scheme was selected. The results showed that the in-plane clamping device has the advantages of reliable connection and simple operation, which is suitable for popularization. However, there is a problem that the size processing error or micro deformation of the clamp leads to the narrowing of the contact surface with the specimen, intensifies the stress concentration caused by clamping, and makes it impossible to control the main crack to be located in the measuring range; both flexible reinforcement (paste carbon fiber reinforced polymer) and rigid reinforcement (paste aluminum sheet) of the contact area between the specimen and the fixture can effectively solve the above problems, increase the success rate. In addition, the influence of the aspect ratio and volume fraction of steel fibers on the damage constitutive relationship of UHPC under uniaxial tension was investigated by using the optimal uniaxial tensile test method. The damage evolution law of UHPC under uniaxial tensile load was explored through acoustic emission (AE) monitoring. The damage factor was constructed using AE parameters (cumulative counts ratio), and the uniaxial tensile da-mage constitutive relationship of UHPC considering the influence of steel fiber was obtained.
Key words:  ultra-high performance concrete    uniaxial tensile test    connection device    reinforcement methods    steel fiber factor    uniaxial tensile constitutive relationship
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU528.58  
基金资助: 国家级地方高校能源和环境材料化学学科创新引智基地(D20015);土木工程防灾减灾湖北省引智创新示范基地(2021EJD026);国家自然科学基金(51878178);湖北省博士后创新项目(Z2022177);防灾减灾重点试验室开放基金(4102/1640082)
通讯作者:  *杨简,工学博士,讲师。博士毕业于福州大学,现任职于三峡大学。长期从事UHPC相关研究,主要研究方向包括纤维增强作用,UHPC基础材料性能,UHPC本构关系和UHPC结构设计方法。   
引用本文:    
杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
YANG Jian, LI Yang, CHEN Baochun, XU Gang, HUANG Qingwei. Study on Uniaxial Tensile Test Method and Constitutive Relationship of UHPC. Materials Reports, 2024, 38(6): 22110263-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110263  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22110263
1 Du R Y, Chen B C, Shen X J. Materials Reports, 2016, 30(S2), 483 (in Chinese).
杜任远, 陈宝春, 沈秀将. 材料导报, 2016, 30(S2), 483.
2 Yang W, Xie Y H, Bi Y, et al. Concrete, 2022(5), 37 (in Chinese).
杨文, 谢昱昊, 毕耀, 等. 混凝土, 2022(5), 37.
3 Huang X, Liu T S, Ding Q J. Concrete, 2019(9), 36 (in Chinese).
黄祥, 刘天舒, 丁庆军. 混凝土, 2019(9), 36.
4 Wu C J,Wang D Z ,Ma Z P. Journal of Functional Materials, 2022(4), 53(in Chinese).
吴晨洁, 王德志, 马志鹏. 功能材料, 2022(4), 53.
5 Chen B C, Yang J, Wu X G, et al. China Journal of Highway and Transport, 2021, 34(8), 23 (in Chinese).
陈宝春, 杨简, 吴香国, 等. 中国公路学报, 2021, 34(8), 23.
6 Association Francaise de Genie Civil (AFGC)-Service d' etudes techniques desroutes et autoroutes (SETRA). Bétonsfibrés à ultra-hautes performances-ultra high performancefibre-reinforced concretes- Interim recommendations. AFGC Scientific and Technical Documents, 2002.
7 National Addition to Eurocode 2 Design of Concrete Structures: Specific Rules for Ultra-high performanceFibre-reinforced Concrete (UPHFRC):NF P 18-710. Association Francaise de Normalisation, France, 2016.
8 ASTM C1856/C1856M 17. Standard Practice for Fabricating and Testing Specimens with UHPC. ASTM International, West Conshohocken, PA, 2017.
9 Japan Society of Civil Engineers. Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft). Japan Society of Civil Engineers (JSCE), Japan, 2006.
10 Reactive powder concrete: GB/T31387 2015. China Architecture and Building Press, China, 2015 (in Chinese).
活性粉末混凝土: GB/T31387 2015. 中国建筑工业出版社, 2015.
11 Japan Society of Civil Engineers. Recommendations for design and construction of highperformance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Japan Society of Civil Engineers (JSCE), Japan, 2008.
12 SIA2052. BétonsFibrés Ultra-performant: Matériaux, Dimensionnement et Exécution (UHPFRC: Construction Material, Dimensioning and Application). MCS, Switzerland, 2016.
13 Fundamental characteristics and test methods of ultra-high performance concrete:T/CCPA 7—2018/T/CBMF 37. China Building Materials Fe-deration, China, 2018
超高性能混凝土基本性能与试验方法: T/CCPA 7—2018/T/CBMF 37. 中国建筑材料协会, 2018.
14 Xu S L, Li H D. China Civil Engineering Journal, 2009, 42(9), 32 (in Chinese).
徐世烺, 李贺东. 土木工程学报, 2009, 42(9), 32.
15 Kou J L, Deng M K, Liang X W. Building Structure, 2013, 43(1), 59 (in Chinese).
寇佳亮, 邓明科, 梁兴文. 建筑结构, 2013, 43(1), 59.
16 Mallat A, Alliche A. Strain Volume, 2011, 47(6), 499.
17 Liu J Z, Han F Y, Zhou H X, et al. Materials Reports, 2017, 31(23), 24 (in Chinese).
刘建忠, 韩方玉, 周华新, 等. 材料导报, 2017, 31(23), 24.
18 Park S H, Kim D J, Ryu G S, et al. Cement and Concrete Composite, 2012, 34(2), 172.
19 Yang J, Chen B C, Shen X J, et al. Engineering Mechanics, 2018, 35(10), 40 (in Chinese).
杨简, 陈宝春, 沈秀将, 等. 工程力学, 2018, 35(10), 40.
20 Technical regulations for ultra-high performance concrete preparation and engineering application: DB13/T2946-2019. Hebei Administration for Market Regulation, China, 2019.
超高性能混凝土制备与工程应用技术规程: DB13/T2946-2019. 石家庄:河北省市场监督管理局, 2019.
21 Zhang Z, Shao X D, Li W G, et al. China Journal of Highway and Transport, 2015, 28(8), 50 (in Chinese).
张哲, 邵旭东, 李文光, 等. 中国公路学报, 2015, 28(8), 50.
22 Hu A X, Liang X W, Yu J, et al. Journal of Hunan University(Natural Sciences), 2018, 45(3), 30 (in Chinese).
胡翱翔, 梁兴文, 于婧, 等. 湖南大学学报(自然科学版), 2018, 45(3), 30.
23 Augusto K P, Ricardo C, Khalil E D M. Engineering Structure, 2018, 170, 63.
24 Gao X L, Wang J Y, Guo J Y, et al. Acta Materiae Compositae Sinica, 2021, 38(11), 3925 (in Chinese).
杲晓龙, 王俊颜, 郭君渊, 等. 复合材料学报, 2021, 38(11), 3925.
25 Hashim D T, Hejazi F, Lei V Y. International Journal of Concrete Structures and Materials, 2020, 14(1), 45.
26 Ma T X, Zhang L J, Xie W, et al. IOP Conference Series: Earth and Environmental Science, 2019, 233(03), 032019.
27 Doo-Yeol Y, Soonho K, Jae-Jin K, et al. Construction and Building Materials, 2019, 206, 46.
28 Yang J, Chen B C, Su J Z, et al. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3), 1.
29 Plagué T, Desmettre C, Charron J P. Cement and Concrete Research, 2017, 94, 59.
30 Wu Z M, Shi C J, He W, et al. Construction and Building Materials, 2018, 103, 8.
31 Abrishambaf Amin, Pimentel Mário, Nunes Sandra. Cement and Concrete Research, 2017, 97, 28.
32 Li B, Xu L H, Shi Y C, et al. Construction and Building Materials, 2018, 181, 474.
33 Zhou Y, Zheng S, Chen L Z, et al. Journal of Building Engineering, 2021, 44, 102899.
34 Zhao L, Kang L, Yao S. IEEE Access, 2018, 7, 984.
35 Wang S, Xu L, Yin C, et al. Composite Structures, 2021, 267, 113855.
36 Huang B, Li B. Journal of Water Resources and Architectural, 2018, 16(4), 201 (in Chinese).
黄彪, 李彪. 水利与建筑工程学报, 2018, 16(4), 201.
37 Xiu Y J, He X F, Li F Y, et al. Highway Engineering, 2021, 46(2), 188 (in Chinese).
修义军, 何湘峰, 李芳园, 等. 公路工程, 2021, 46(2), 188.
38 Wille K, EL Tawil S, Naaman A E. Cement and Concrete Composites, 2014, 48 , 53.
39 Lemaitre Jean. Journal of Engineering Materials and Technology, 1985, 107(1), 83.
40 Yang M, Huang C K. China Civil Engineering Journal, 2006(3), 55 (in Chinese).
杨萌, 黄承逵. 土木工程学报, 2006(3), 55.
41 Meng Y, Chengkui H, Jizhong W. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2006, 21(3), 132.
42 Shen X J. Experimental study on tensile properties of reactive powder concrete (RPC). Master's Thesis, Fuzhou University, China, 2015 (in Chinese).
沈秀将. 活性粉末混凝土(RPC)受拉性能试验研究. 硕士学位论文, 福州大学, 2015.
43 Wille K , Kim D J , Naaman A E . Materials and Structures, 2011, 44(3), 583.
44 An M Z, Yang Z H, Yu Z R, et al. Journal of the China Railway Society, 2010(1), 54 (in Chinese).
安明喆, 杨志慧, 余自若, 等. 铁道学报, 2010(01), 54.
45 Toshiyuki K. Journal of Advanced Concrete Technology, 2006, 4, 3.
46 Yang Z H. Study on Tension mechanical performance of Reactive Powder Concrete in different steel fiber volume fractions. Master's Thesis, Beijing Jiaotong University, China, 2006 (in Chinese).
杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究. 硕士学位论文, 北京交通大学, 2006.
47 Yuan H Y. Theoretical analysis and experimental research on tensile performance of reinforced active powder concrete. Ph. D. Thesis, Beijing Jiaotong University, China, 2009 (in Chinese).
原海燕. 配筋活性粉末混凝土受拉性能试验研究及理论分析. 博士学位论文, 北京交通大学, 2009.
48 Lee N P, Chisholm D H. Reactive powder concrete. Study Report SR 146, BRANZ Ltd, New Zealand, 2005.
49 Hassan A M T, Jones S W, Mahmud G H. Construction and Building Materials, 2012(37), 874.
50 Graybeal B. In: FHWA-HRT-06-103, Federal Highway Administration, Washington DC, 2006, pp. 35.
51 Du R Y, Chen B C. Engineering Mechanics, 2013, 30(5), 42 (in Chinese).
杜任远, 陈宝春. 工程力学, 2013, 30(5), 42.
52 Long J T. Experimental research on tensile performance of gravel reactive powder concrete. Master's Thesis, Beijing Jiaotong University, China, 2010.
龙金涛. 碎石活性粉末混凝土抗拉性能实验研究. 硕士学位论文, 北京交通大学, 2010.
53 Zheng W Z, Li L, Lu S S. Journal of Building Structures, 2011, 32(6), 125 (in Chinese).
郑文忠, 李莉, 卢姗姗. 建筑结构学报, 2011, 32(6), 125.
[1] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[2] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[3] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[4] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[5] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[6] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[7] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[8] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[9] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[10] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[11] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[12] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[13] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[14] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[15] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed