Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22040239-7    https://doi.org/10.11896/cldb.22040239
  无机非金属及其复合材料 |
UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究
郭柳君1, 王凯2,*, 王锦瑜2, 胡仕梅2, 余国庆2
1 中南大学土木工程学院,长沙 410075
2 华东交通大学土木建筑学院,南昌 330013
Experimental Study on Fracture Properties of Wet Joint with UHPC Functional Gradient Under Acid Rain Corrosion
GUO Liujun1, WANG Kai2,*, WANG Jinyu2, HU Shimei2, YU Guoqing2
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 15476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 考虑酸雨地区预制桥面板湿接缝服役期间的结构应力分布和材料制作成本,引入功能梯度组合结构设计理念,设计一种超高性能混凝土(UHPC)功能梯度预制桥面板湿接缝。通过酸雨环境模拟加速腐蚀试验和三点弯曲断裂试验对20组湿接缝试件进行研究。探讨不同的UHPC厚度比(UHPC的浇筑厚度与试件的总厚度之比)和酸雨腐蚀龄期对湿接缝试件的起裂荷载、失稳荷载、弹性模量、断裂韧度和断裂能的影响。结果表明,试件的起裂荷载和峰值荷载在腐蚀初期均有所增加,随着腐蚀程度增加,起裂荷载则会加速降低;湿接缝试件的弹性模量、断裂韧度和断裂能随酸雨腐蚀时间的延长呈先增大后减小的变化趋势;UHPC的使用能有效改善湿接缝试件的断裂性能,延缓其在酸雨腐蚀环境下的劣化;当UHPC厚度比为1/3时其利用效率最高,湿接缝试件的断裂性能增速最大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭柳君
王凯
王锦瑜
胡仕梅
余国庆
关键词:  超高性能混凝土  三点弯曲  酸雨腐蚀  功能梯度  湿接缝  断裂性能    
Abstract: Given the structural stress distribution and material manufacturing cost of the wet joint of a prefabricated bridge deck in an acid rain region, a wet joint of the prefabricated bridge deck with an ultra-high performance concrete (UHPC) functional gradient was designed by introducing the design concept of a functional gradient composite structure. Twenty groups of wet joint specimens were studied by the three-point bending fracture test. The effects of different thickness ratios of UHPC and acid rain corrosion time on the initial cracking load, peak load, elastic modulus, fracture toughness, and fracture energy of wet joint specimens were discussed. The results show that the initial cracking load and peak load increase at the initial stage of corrosion, and the initial cracking load will accelerate the deterioration with the degree of corrosion increasing. The elastic modulus, fracture toughness, and fracture energy of wet joint specimens first increased and then decreased with the increase of corrosion time. The use of UHPC material can effectively improve the fracture performance of wet joint specimens and delay their deterioration in acid rain environments. The fracture performance of the wet joint specimen increases the most when the thickness ratio of UHPC is 1/3, indicating that the utilization efficiency of UHPC is the highest.
Key words:  ultra-high performance concrete    three-point bending    acid rain corrosion    functional gradient    wet joint    fracture property
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  U444  
基金资助: 国家自然科学基金(51478183);江西省重点研发计划项目(20192BBG70079)
通讯作者:  *王凯,华东交通大学土木建筑学院教授、博士研究生导师。2000年河南理工大学材料专业本科毕业,2003年河南理工大学材料专业硕士毕业后到华东交通大学工作至2005年,2008年武汉理工大学建筑材料与工程专业博士毕业。目前主要从事桥梁结构耐久性及提升技术研究与应用、超高性能混凝土及其在桥梁与隧道中的应用、高速公路预防性养护新技术等方面的研究工作。发表80余篇学术论文(SCI、EI收录30余篇),获15项授权国家发明专利,出版2部学术专著、1部土木工程专业规划教材。kwanglab@163.com   
作者简介:  郭柳君,现为中南大学土木工程学院博士研究生,在王凯教授的指导下进行研究。目前主要研究领域为桥梁结构耐久性及提升技术。
引用本文:    
郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
GUO Liujun, WANG Kai, WANG Jinyu, HU Shimei, YU Guoqing. Experimental Study on Fracture Properties of Wet Joint with UHPC Functional Gradient Under Acid Rain Corrosion. Materials Reports, 2023, 37(19): 22040239-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040239  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22040239
1 Zhang Y T, Tian F. Bridge Construction, 2018, 48(5), 48 (in Chinese).
张永涛, 田飞. 桥梁建设, 2018, 48(5), 48.
2 Chen W Q, Liu Y J, Zhang J G, et al. Highways & Transportation in Inner Mongolia, 2018(1), 6 (in Chinese).
陈卫全, 刘永健, 张俊光, 等. 内蒙古公路与运输, 2018(1), 6.
3 Chen B. The research on flexural performance of prefabricated NSC components with UHPC wet joints. Master's Thesis, Hunan University, China, 2018 (in Chinese).
陈贝. 预制NSC构件的UHPC湿接缝受弯性能研究. 硕士学位论文, 湖南大学, 2018.
4 Zhang Y, Chen B. Highway Engineering, 2018, 43(6), 1 (in Chinese).
张阳, 陈贝. 公路工程, 2018, 43(6), 1.
5 Billington S L, Breen J E. Journal of Bridge Engineering, 2000, 5(4), 344.
6 Billington S L, Barnes R W. Journal of Bridge Engineering, 2001, 6(2), 87.
7 Zhang C, Shao X D, Zhang Y. China Civil Engineering Journal, 2015, 48(4), 52 (in Chinese).
张策, 邵旭东, 张阳. 土木工程学报, 2015, 48(4), 52.
8 Pan W H, Fan J S, Nie J G, et al. Journal of Bridge Engineering, 2016, 21(10), 04016064.
9 Gao L G, Wang M, Wang K N. Bridge Constructioni, 2022, 52(2), 82 (in Chinese).
高立强, 王敏, 王康宁. 桥梁建设, 2022, 52(2), 82.
10 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741.
11 Graybeal B, Tanesi J. Journal of Materials in Civil Engineering, 2007, 19(10), 848.
12 Shao X D, Qiu M H, Yan B F, et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
13 Peng K, Yan B. Magazine of Concrete Research, 2022, 74(2), 70.
14 Arafa A, Farghaly A S, Ahmed E A, et al. Journal of Bridge Enginee-ring, 2016, 21(11), 05016006.
15 Hu Z J, Yin B S, Yu W S. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(6), 29 (in Chinese).
胡志坚, 尹炳森, 俞文生. 中山大学学报(自然科学版), 2021, 60(6), 29.
16 Xia Q, Sun Y, Wang D, et al. China Concrete and Cement Products, 2020, 295(11), 10 (in Chinese).
夏强, 孙宇, 王冬, 等. 混凝土与水泥制品, 2020, 295(11), 10.
17 Ge W J, Ashour A F, Yu J M, et al. Journal of Composites for Construction, 2019, 23(1), 04018069.
18 Zhang J, Wang Z, Ju X, et al. Engineering Fracture Mechanics, 2014, 131, 419.
19 Gao Y L, Ma B G. Journal of Railway Science and Engineering, 2009, 6(3), 8 (in Chinese).
高英力, 马保国. 铁道科学与工程学报, 2009, 6(3), 8.
20 Mei R S, Wang K, Yu G Q, et al. Journal of East China Jiaotong University, 2022, 39(1), 1 (in Chinese).
梅若诗, 王凯, 余国庆, 等. 华东交通大学学报, 2022, 39(1), 1.
21 Niu D T, Zhou H S, Niu J G. Bulletin of Chinese Ceramic Society, 2009, 28(3), 411 (in Chinese).
牛获涛, 周浩爽, 牛建刚. 硅酸盐通报, 2009, 28(3), 411.
22 Zhang Y Z, Zhao Y H, Fan Y F. Engineering Mechanics, 2011, 28(2), 175 (in Chinese).
张英姿, 赵颖华, 范颖芳. 工程力学, 2011, 28(2), 175.
23 Zhu Z. Mathematics and Mechanics of Solids, 2009, 14(8), 727.
24 Wang Z, Zhu Z, Sun X, et al. Engineering Failure Analysis, 2017, 77, 76.
25 Reis J. Construction & Building Materials, 2010, 24(9), 1708.
26 Xie S, Qi L, Zhou D. Atmospheric Environment, 2004, 38(27), 4457.
27 Gong X, Chen F, Zuo J. Journal of Green Science and Technology, 2017(20), 65 (in Chinese).
龚娴, 陈芬, 左嘉. 绿色科技, 2017(20), 65.
28 Wu B, Liu W L, Wan Y F, et al. Pearl River, 2020, 41(6), 99 (in Chinese).
吴滨, 刘卫林, 万一帆, 等. 人民珠江, 2020, 41(6), 99.
29 Rong Z, Sun W, Xiao H, et al. Cement and Concrete Composites, 2015, 56, 25.
30 Tayeh B A, Abu B B H, Megat J M A, et al. Journal of Adhesion Science and Technology, 2014, 28(18), 1846.
31 Zhou Y, Huang J, Yang X, et al. Construction and Building Materials, 2021, 285, 122862.
32 Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook, American Society of Testing Materials Press, UK, 2000, pp. 59.
33 Hamrat M, Boulekbache B, Chemrouk M, et al. Construction and Buil-ding Materials, 2016, 106, 678.
34 Zhu Z H, Feng Q S, Xiao Q Q, et al. China Civil Engineering Journal, 2021, 54(6), 99 (in Chinese).
朱志辉, 冯乾朔, 肖权清, 等. 土木工程学报, 2021, 54(6), 99.
35 Xu S, Reinhardt H W. International Journal of Fracture, 2000, 104(2), 181.
36 National Development and Reform Commission. Norm for fracture test of hydraulic concrete DL/T 5332-2005, China Power Press, China, 2002, pp. 15(in Chinese).
中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程 DL/T 5332-2005, 中国电力出版社, 2002, pp. 15.
37 Zhou C L, Zhu Z M, Zhu A J, et al. Advanced Engineering Sciences, 2019, 51(1), 144 (in Chinese).
周昌林, 朱哲明, 朱爱军, 等. 工程科学与技术, 2019, 51(1), 144.
38 Recommendation R D. Materials and Structures, 1985, 18(106), 285.
[1] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[2] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[3] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[4] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[5] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[6] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[7] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[8] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[9] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[10] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[11] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[12] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报, 2022, 36(10): 20030137-7.
[13] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[14] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[15] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed