Abstract: In order to improve the surface quality of 10CrNiCuSi shipbuilding steel, the experimental steel with Si content ranging from 0.08% to 0.65% was designed. The high-temperature oxidation behavior of the steel at 1 150—1 250 ℃ was studied and the strippability of the oxide scales was evaluated by bend tests. The influence of Si content on Si-riched reaction products and oxidizing weight was discussed and analyzed. The results show that when the oxidizing temperature is lower than Fe2SiO4-FeO eutectic temperature, the oxidizing weight drops down with the increase of Si content, which leads to the formation of more Fe2SiO4 solid phase, acting to inhibit the oxidation reaction. When the oxidizing temperature is higher than Fe2SiO4-FeO eutectic temperature, the oxidizing weight increases with the increase of Si content at the range of 0.20%—0.65%, owing to the Si-rich liquid phase accelerating the oxidation reaction. The liquefaction phenomenon of Si-rich products has an important influence on the strippability of the oxide scales. The liquified Si-rich phase is immersed into the substrate and FeO, forming an anchor-like or grid-like morphology, which seriously deteriorates the flatness of the interface between the internal oxide layer and the substrate, making it difficult for the scales to exfoliate from the substrate. The increase of Si content and consequent liquefied phase worsens the strippability of the scales from the substrate. The experimental results show that temperature and Si content are significant factors to improve the surface quality of 10CrNiCuSi steel and it is recommended that the Si content should be controlled not higher than 0.20%, and the heating temperature should be not higher than 1 150 ℃.
通讯作者:
*柴希阳,钢铁研究总院工程用钢研究所高级工程师。2011年武汉科技大学金属材料工程专业本科毕业,2014年钢铁研究总院材料学硕士毕业,2018年清华大学材料科学与工程专业博士毕业,然后进入钢铁研究总院工程用钢研究所工作至今。目前主要从事船体结构钢、双金属复合材料、微合金化、控轧控冷、高温氧化等方面的研究工作。发表论文20余篇,包括Material Letters、Journal of Iron and Steel Research、《稀有金属材料工程》《工程学报》等。 chaixiyang0728@163.com
作者简介: 潘涛,钢铁研究总院工程用钢研究所教授级高级工程师。2000年北京科技大学材料科学与工程专业本科毕业,2003年清华大学材料学硕士毕业,2015年钢铁研究总院材料学博士毕业,2003年硕士毕业后进入钢铁研究总院工程用钢研究所工作至今。目前主要从事船舶与海工用钢、微合金化、材料热动力学等方面的研究工作。发表论文60余篇,包括Materials Science and Engineering A、Science Bulletins、Rare Metals、《金属学报》等。
引用本文:
潘涛, 赵蕾, 柴希阳, 罗小兵, 柴锋, 杨才福. Si含量对10CrNiCuSi钢氧化铁皮的影响[J]. 材料导报, 2023, 37(19): 22040261-6.
PAN Tao, ZHAO Lei, CHAI Xiyang, LUO Xiaobing, CHAI Feng, YANG Caifu. Effect of Silicon Content on the Oxide Scale of 10CrNiCuSi Steel. Materials Reports, 2023, 37(19): 22040261-6.
1 Zhao L, Li J M, Mu X B, et al. Heat Treatment of Metals, 2022, 47(1), 6(in Chinese). 赵蕾, 李建铭, 穆晓彪, 等. 金属热处理, 2022, 47(1), 6. 2 Sun W, Tieu A K, Jiang Z, et al. Journal of Materials Processing Technology, 2004, 155, 1307. 3 Yu W, Wang J, Liu T. Steel Rolling, 2017, 34(3), 6(in Chinese). 余伟, 王俊, 刘涛. 轧钢, 2017, 34(3), 6. 4 Song E J, Suh D W, Bhadeshia H. Ironmaking & Steelmaking, 2012, 39(8), 599. 5 Yuan Q, Xu G, Zhou M, et al. Metals, 2016, 6(4), 94. 6 Fukagawa T, Okada H, Maehara Y. ISIJ International, 1994, 34(11), 906. 7 Okada H, Fukagawa T, Ishihara H, et al. ISIJ International, 1995, 35(7), 886. 8 Taniguchi S, Yamamoto K, Megumi D, et al. Materials Science and Engineering A, 2001, 308(1-2), 250. 9 Liu X J. Research on high temperature oxidation behavior and controlling technology and application of oxide scale of hot-rolled non-oriented silicon steel. Ph. D. Thesis, Northeastern University, China, 2014 (in Chinese). 刘小江. 热轧无取向硅钢高温氧化行为及其氧化铁皮控制技术的研究与应用. 博士学位论文, 东北大学, 2014. 10 Yang Y L, Yang C H, Lin S H, et al. Materials Chemistry and Physics, 2008, 112(2), 566. 11 Wang S T, Li M, Zhu L X, et al. Hot Working Technology, 2011, 40(16), 50(in Chinese). 王松涛, 李敏, 朱立新, 等. 热加工工艺, 2011, 40(16), 50. 12 Yu Y, Wang C, Wang L, et al. Steel Rolling, 2016, 33(2), 10 (in Chinese). 于洋, 王畅, 王林, 等. 轧钢, 2016, 33(2), 10. 13 Zeng L. Study on phase diagram of FeO-V2O3-SiO2-Al2O3 system.Master' Thesis, Chongqing University, China, 2013 (in Chinese). 曾利. FeO-V2O3-SiO2-Al2O3四元系相图研究. 硕士学位论文, 重庆大学, 2013. 14 Yuan Q, Xu G, Zhou M, et al. Metals, 2017, 7(2), 37. 15 Sun B, You H G, Hao M X, et al. Journal of Shenyang University, 2019, 31(4), 263 (in Chinese). 孙彬, 尤宏广, 郝明欣, 等. 沈阳大学学报, 2019, 31(4), 263. 16 Asai T, Soshiroda T, Miyahara M. ISIJ International, 1997, 37(3), 272. 17 Lu G F, Gu J Z, Wu G Y. Acta Metallurgica Sinica, 1985, 21(5), 31(in Chinese). 陆关福, 顾建忠, 吴光亚. 金属学报, 1985, 21(5), 31. 18 Liu Y Z, Yang C F, Chai F, et al. Materials Science and Technology, 2013, 21(6), 78(in Chinese). 刘翊之, 杨才福, 柴锋, 等. 材料科学与工艺, 2013, 21(6), 78. 19 Melfo W, Bolt H, Rijnders M, et al. ISIJ International, 2013, 53(5), 866. 20 Suárez L, Rodríguez-Calvillo P, Houbaert Y, et al. Corrosion Science, 2010, 52(6), 2044.