Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22010113-11    https://doi.org/10.11896/cldb.22010113
  金属与金属基复合材料 |
电子封装用纳米复合焊膏的研究进展
杜伟, 强军锋, 余竹焕*, 高炜, 阎亚雯, 王晓慧, 刘旭亮
西安科技大学材料科学与工程学院,西安 710054
Research Progress of Composite Nanosolders for Electronic Packaging
DU Wei, QIANG Junfeng, YU Zhuhuan*, GAO Wei, YAN Yawen, WANG Xiaohui, LIU Xuliang
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 27064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 焊料作为焊接工艺的核心,在电子封装器件与材料的互连中扮演着重要角色。随着第三代功率半导体器件的发展,迫使电子封装材料向高功率密度、高服役温度和高可靠性的方向发展。纳米复合焊膏凭借其低温烧结、高温服役和优越的导电性能成为未来电子封装互连材料领域重要的研究方向。本文综合阐述了纳米复合焊膏的研究进展,重点介绍了目前纳米复合焊膏的三种制备方法;归纳整理了Sn-Ag-Cu、Sn-Cu、Ag-Cu、Sn-Zn和Sn-Ag几种不同类型的纳米复合焊膏,并总结了焊膏微观组织、熔化特性、润湿性、导电性、力学性能和可靠性的影响机理;指出了目前纳米复合焊膏的不足之处,并对其发展趋势以及研究前景进行了分析和展望,以期能够为日后研发更高性能的纳米复合焊膏提供一定的理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜伟
强军锋
余竹焕
高炜
阎亚雯
王晓慧
刘旭亮
关键词:  纳米复合焊膏  电化学沉积法  微乳法  液相化学还原法  显微组织  可靠性    
Abstract: As the key of the welding process, solders play an important role in the interconnection between electronic packaging devices and materials. The electronic packaging materials are forced to develop in the direction of high power density, high service temperature and high reliability as the demands of new generation power devices increase. Composite nanosolders have shown good prospects due to their low-temperature sintering, high-temperature service, and excellent electrical conductivity. In this paper, a review of current research on composite nanosolders is presented. Characteristics between the three methods used to prepare composite nanosolders are first discussed. Thereafter, the effective mec-hanism of composite nanosolders on the microstructure and properties are discussed for Sn-Ag-Cu, Sn-Cu, Ag-Cu, Sn-Zn, and Sn-Ag composite nanosolders. Finally, the limitations and developmental research trends of composite nanosolders are summarized as a reference for the future investigation of composite nanosolders with improved performance.
Key words:  composite nanosolder    electrochemical deposition    microemulsion method    aqueous chemical reduction    microstructure    reliability
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG42  
基金资助: 西安科技大学优秀青年科技基金项目(2018YQ2-12);凝固技术国家重点实验室开放课题(SKLSP201846);陕西省留学人员科技活动择优资助项目(201847)
通讯作者:  *余竹焕,发表被SCI、EI收录论文23篇。西安科技大学材料科学与工程学院副教授、硕士研究生导师。2011年3月在西北工业大学材料科学与工程学院取得博士学位,2015.07-2016.07在美国加州州立大学在进行访问学者研究工作。先后主持了国家自然基金青年项目,留学人员科技活动择优资助项目,陕西省自然科学基础研究计划项目,凝固技术国家重点实验室开放课题项目,陕西省教育厅专项科研计划项目。主要从事高温结构材料的研究工作。 yzh0709qyy@xust.edu.cn   
作者简介:  杜伟,2021年毕业于西安科技大学,获得工学学士学位。现为西安科技大学材料与工程学院硕士研究生,在余竹焕教授的指导下进行研究。目前主要研究方向为微电子封装材料与技术。
引用本文:    
杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
DU Wei, QIANG Junfeng, YU Zhuhuan, GAO Wei, YAN Yawen, WANG Xiaohui, LIU Xuliang. Research Progress of Composite Nanosolders for Electronic Packaging. Materials Reports, 2023, 37(19): 22010113-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010113  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22010113
1 Zhu M S, Zhu F, Schmidt O G. Nano Materials Science, 2021, 3, 107.
2 Wang J H, Xue S B, Lyu Z P, et al. Materials Reports, 2019, 33(7), 2133 (in Chinese).
王剑豪, 薛松柏, 吕兆萍, 等. 材料导报, 2019, 33(7), 2133.
3 Zou G S, Lin L C, Xiao Y, et al. Chinese Journal of Lasers, 2021, 48(15), 128 (in Chinese).
邹贵生, 林路禅, 肖宇, 等. 中国激光, 2021, 48(15), 128.
4 Wang J H, Xue S B, Zhang P, et al. Journal of Materials Science, 2019, 30, 9065.
5 Jiang Z, Tian Y H, Ding S. Acta Metallurgica Sinica, 2016, 52(1), 105 (in Chinese).
江智, 田艳红, 丁苏. 金属学报, 2016, 52(1), 105.
6 Zeng C, Cui X H, Liao C J, et al. Micronanoelectronic Technology, 2021, 58(10), 866 (in Chinese).
曾策, 崔西会, 廖承举, 等. 微纳电子技术, 2021, 58(10), 866.
7 Wu W Z, Yang F, Hu B, et al. Transactions of the China Welding Institution, 2021, 42(1), 83 (in Chinese).
吴炜祯, 杨帆, 胡博, 等. 焊接学报, 2021, 42(1), 83.
8 Zheng Z, Yang F, Wang C Q. In:Conference Record of the 2016 IEEE 17th International Conference on Electronic Packaging Technology. Wuhan, China, 2016, pp. 849.
9 Li J J, Shi T L, Yu X, et al. In:Conference Record of the 2017 IEEE 67th Electronic Components and Technology Conference. Orlando, 2017, pp. 976.
10 Yu H, Li L L, Zhang Y J. Scripta Materialia, 2012, 66, 931.
11 Li J J, Cheng C L, Shi T L, et al. Materials Letters, 2016, 184, 193.
12 Khazaka R, Mendizabal L, Henry D. Journal of Electronic Materials, 2014, 43, 2459.
13 Morisada Y, Nagaoka T, Fukusumi M, et al. Journal of Electronic Materials, 2010, 39, 1283.
14 Yi J B, Pan H, Lin J Y, et al. Advanced Materials, 2008, 20, 1170.
15 Liu W J, Lei W N, Qu N S, et al. Rare Metal Materials and Engineering, 2010, 39(11), 2064 (in Chinese).
刘维桥, 雷卫宁, 曲宁松, 等. 稀有金属材料与工程, 2010, 39(11), 2064.
16 Zhang X. Synthesis, characterization and nanosoldering application of Sn-Cu-based nanosolders. Ph. D. Thesis, Lanzhou University, China, 2019 (in Chinese).
张悬. 锡铜系纳米焊料制备、表征及纳米焊接应用. 博士学位论文, 兰州大学, 2019.
17 Takahashi K, Limmer S J, Wang Y, et al. American Chemical Society, 2004, 108, 9795.
18 Feng J, Zhang C P. Journal of Analytical Atomic Spectrometry, 2006, 293, 414.
19 Sharma G, Kumar D, Kumar A, et al. Materials Science & Engineering C, 2016, 11, 2.
20 Gao B J, Gao J F, Zhou J Q, et al. Chinese Journal of Inorganic Chemistry, 2001, 17(4), 491 (in Chinese).
高保娇, 高建峰, 周加其, 等. 无机化学学报, 2001, 17(4), 491.
21 Zhou D B, Tu S Q, Ren Z W, et al. Journal of Central South University (Science and Technology), 2007, 38(4), 706 (in Chinese).
周德璧, 屠赛琦, 任志伟, 等. 中南大学学报(自然科学版), 2007, 38(4), 706.
22 Foo S P, Siow K S, Jalar A. In:Conference Record of the 2014 IEEE International Conference on Semiconductor Electronics. Kuala Lumpur, 2014, pp. 513.
23 Wang Y. Synthesis of nano-SnAgCu solder by microemulsion method.Master' Thesis, China Jiliang University, China, 2019 (in Chinese).
王艳. 微乳法合成纳米SnAgCu焊料. 硕士学位论文, 中国计量大学, 2019.
24 Teng Y, Yan F C, Li W L, et al. Materials Reports, 2015, 29(25), 172 (in Chinese).
滕媛, 闫方存, 李文琳, 等. 材料导报, 2015, 29(25), 172.
25 Cao Y, Liu P, Wei H M, et al. Journal of Materials Engineering, 2015, 43(4), 79 (in Chinese).
曹洋, 刘平, 魏红梅, 等. 材料工程, 2015, 43(4), 79.
26 Zou C D, Gao Y L, Yang B, et al. Transactions of Nonferrous Metals Society of China, 2010, 20, 248.
27 Wang Y, Liu W X, Liu W, et al. Microelectronics Reliability, 2017, 78, 17.
28 Schmitt W, Fritzsche S, Thomas M. In:Conference Record of the 2012 IEEE 7th International Conference on Integrated Power Electronics Systems. Nuremberg, 2012, pp. 1.
29 Zhao Y M, Wu Y B, Evans K, et al. In:Conference Record of the 2014 IEEE 15th International Conference on Electronic Packaging Technology. Chengdu, 2014, pp. 200.
30 Ren H, Zhang H Q, Wang W G, et al. Chinese Journal of Lasers, 2021, 48(8), 126 (in Chinese).
任辉, 张宏强, 王文淦, 等. 中国激光, 2021, 48(8), 126.
31 Yung K C, Law C M T, Lee C P, et al. Journal of Electronic Materials, 2012, 41, 313.
32 Zou C D, Gao Y L, Yang B, et al. Journal of Materials Science:Materials in Electronics, 2012, 23, 2.
33 Liu W X. The study of SnAgCu nano solder paste.Master' Thesis, China Jiliang University, China, 2017 (in Chinese).
刘文晓. SnAgCu纳米焊膏的研究. 硕士学位论文, 中国计量大学, 2017.
34 Qiu T, Liu S L, Zhu M C, et al. Technology Innovation and Application, 2021, 11(19), 29 (in Chinese).
邱天, 刘树龙, 朱明成, 等. 科技创新与应用, 2021, 11(19), 29.
35 Hsiao L Y, Duh J G. Journal of the Electrochemical Society, 2005, 152, 150.
36 Yu X, Di T T, Shen H Y. Chinese Journal of Materials Research, 2020, 34(4), 299 (in Chinese).
俞鑫, 邸彤彤, 沈杭燕. 材料研究学报, 2020, 34(4), 299.
37 Roshanghias A, Khatibi G, Yakymovych A, et al. Journal of Electronic Materials, 2016, 45, 4390.
38 Yakymovych A, Slabon A, Svecsr P, et al. Applied Nanoscience, 2020, 10, 4603.
39 Zhang L, Tu K N. Materials Science and Engineering R, 2014, 82, 1.
40 Mehreen S U, Nogita K, McDonald S, et al. Journal of Alloys and Compounds, 2018, 6, 251.
41 Fan J L, Liu Z Y, Li Y W, et al. Materials Reports, 2018, 32(11), 3774 (in Chinese).
樊江磊, 刘占云, 李育文, 等. 材料导报, 2018, 32(11), 3774.
42 Mohd-Said R, Mohd-Salleh M A A, Saud N, et al. Journal of Materials Science:Materials in Electronics, 2020, 31, 11077.
43 Ma H W. The preparation of nano Cu6Sn5 solder paste and power dieattache bonding process.Master' Thesis, Harbin Institute of Technology, China, 2016 (in Chinese).
马慧文. 纳米Cu6Sn5焊膏制备与功率芯片贴装键合工艺. 硕士学位论文, 哈尔滨工业大学, 2017.
44 Zhang R, Tian Y H, Hang C J, et al. Materials Letters, 2013, 110, 137.
45 Chen S H, Fan G Y, Yan X, et al. In:Conference Record of the 2015 IEEE 16th International Conference on Electronic Packaging Technology. Changsha, 2015, pp. 367.
46 Kang H, Sharma A, Jung J P. Metals, 2020, 10, 934.
47 Wang H W, Sun S C, Xu Z Q, et al. Transactions of the China Welding Institution, 2012, 33(9), 77 (in Chinese).
王宏伟, 孙实春, 徐振清, 等. 焊接学报, 2012, 33(9), 77.
48 Zhong Y, An R, Wang C Q, et al. Small, 2015, 11, 4097.
49 El-Daly A A, Hammad A E. Journal of Alloys and Compounds, 2011, 509, 8554.
50 Andersson C, Sun P, Liu J. Journal of Alloys and Compounds, 2008, 457, 97.
51 Wang M, Zhang G X, Zhong S J, et al. Materials Reports, 2021, 35(10), 10147 (in Chinese).
王蒙, 张冠星, 钟素娟, 等. 材料导报, 2021, 35(10), 10147.
52 Zeng G, McDonald S D, Gu Q F, et al. Acta Materials, 2015, 83, 357.
53 Huang P C, Duh J G. Journal of Nanoscience and Nanotechnology, 2009, 9, 764.
54 Huang H Z, Lu D, Zhao J W, et al. Materials Reports, 2016, 30(7), 104 (in Chinese).
黄惠珍, 卢德, 赵骏韦, 等. 材料导报, 2016, 30(7), 104.
55 Yang F, Zhang L, Liu Z Q, et al. Hindawi Publishing Corporation, 2016, 2016, 1.
56 Gan G S, Liu C, Cheng H L, et al. Electronic Components and Materials, 2020, 39(2), 83 (in Chinese).
甘贵生, 刘聪, 程翰林, 等. 电子元件与材料, 2020, 39(2), 83.
57 Qi Y F, Huang X M, Wang L, et al. Welding & Joining, 2021, 64(1), 18 (in Chinese).
齐岳峰, 黄晓猛, 王莉, 等. 焊接, 2021, 64(1), 18.
58 Zhang X, Zhang H, Zheng X J, et al. Nanotechnology, 2019, 30, 1.
59 Shang H L, Ma B Y, Li R B, et al. Rare Metal Materials and Engineering, 2019, 48(3), 835 (in Chinese).
尚海龙, 马冰洋, 李荣斌, 等. 稀有金属材料与工程, 2019, 48(3), 835.
60 Tsaoa L C, Huang C H, Chung C H, et al. Materials Science and Engineering A, 2012, 545, 194.
61 Guo L J, Liu W, Ji X L, et al. Results in Materials, 2021, 10, 1.
62 Shi Y H. Study on the preparation and properties of micro-Ag/nano-Ag-Cu particles mixed solder paste.Master' Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
石宇皓. 微米Ag/纳米Ag-Cu颗粒混合焊膏的制备及性能研究. 硕士学位论文, 哈尔滨工业大学, 2020.
63 Yan J F, Zhang D Y, Zou G S, et al. Journal of Electronic Materials, 2019, 48, 1286.
64 Yan J F, Zou G S, Wu A P, et al. Journal of Electronic Materials, 2012, 41, 1886.
65 Liu X J. Nanoalloying and anti-electrochemical migration mechanisms of Ag-Cu supersaturated solid solution nanoparticles. Ph. D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
刘晓剑. Ag-Cu超饱和固溶体纳米颗粒纳米冶金及抗电化学迁移机理. 博士学位论文, 哈尔滨工业大学, 2017.
66 Wu N. Study on sintering process and properties of composite micro-nano-Cu@Ag solder paste.Master' Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
吴楠. 复合微纳米Cu@Ag焊膏烧结工艺及其性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
67 Hu K. Research on low-temperature sintering joining for Ag/Cu nanoparticle composite paste.Master' Thesis, Wuhan Institute of Technology, 2018 (in Chinese).
胡坤. 纳米Ag/Cu复合焊膏的低温烧结连接研究. 硕士学位论文, 武汉工程大学, 2018.
68 Kim J C, Ren Z Q, Yuksel A, et al. Journal of Electronic Packaging, 2021, 143, 10801.
69 Liu G Y, Wang Y G, Li X, et al. Electric Drive for Locomotives, 2021, 30(5), 1 (in Chinese).
刘国友, 王彦刚, 李想, 等. 机车电传动, 2021, 30(5), 1.
70 Dai X F, Xu W, Zhang T, et al. Chemical Engineering Journal, 2019, 364, 310.
71 Yu X, Li J J, Shi T L, et al. Journal of Alloys and Compounds, 2017, 724, 365.
72 Lee C, Kim N R, Koo J, et al. Nanotechnology, 2015, 26, 1.
73 Kim C K, Lee G J, Lee M K, et al. Powder Technology, 2014, 263, 1.
74 Jia Q, Zou G S, Wang W G, et al. ACS Applied Materials & Interfaces, 2020, 12, 16734.
75 Jia Q, Wang W G, A Z W, et al. Chinese Journal of Lasers, 2021, 48(8), 167 (in Chinese).
贾强, 王文淦, 阿占文, 等. 中国激光, 2021, 48(8), 167.
76 Kim S, Kim K, Kim S, et al. Journal of Electronic Materials, 2009, 38, 2668.
77 Li J J, Shi T L, Yu X, et al. In:Conference Record of the 2016 IEEE Electrical Design of Advanced Packaging and Systems. Honolulu, 2016, pp. 127.
78 Wang M Y, Hu W B, Sun X D, et al. Electronics & Packaging, 2021, 21(10), 106 (in Chinese).
王美玉, 胡伟波, 孙晓冬, 等. 电子与封装, 2021, 21(10), 106.
79 Zhang S Y, Bao T Y, Xiu Z Y, et al. Materials Reports, 2021, 35(2), 2133 (in Chinese).
张墅野, 鲍天宇, 修子扬, 等. 材料导报, 2021, 35(2), 2133.
80 Amin N A A M, Shnawah D A, Said S M, et al. Journal of Alloys and Compounds. 2014, 599, 114.
81 BraunovicM, Gagnon D, Rodrigue L. In:Conference Record of the 2006 IEEE Proceedings of the 52nd Holm Conference on Electrical Contacts. Montreal, 2006, pp. 117.
82 Sharma A, Sohn H R, Jung J P. Metallurgical and Materials Transactions A, 2016, 47, 494.
83 Hasnine1 M, Tolla1 B, Karasawa M. Journal of Materials Science:Materials in Electronics, 2017, 28, 16106.
84 Huang H Z, Zhou L, Wei X Q, et al. Materials Science & Technology, 2008, 16(3), 374 (in Chinese).
黄惠珍, 周浪, 魏秀琴, 等. 材料科学与工艺, 2008, 16(3), 374.
85 Mahmudi R, Geranmayeh A R, Khanbareh H, et al. Materials and Design, 2009, 30, 574.
86 Hong H, Min D. Metals and Materials International, 2021, 27, 1.
87 Suganuma K, Kim K S. Journal of Materials Science-Materials in Electronics. 2007, 18, 121.
88 Ma L. Preparation of Sn9Zn nano-composite solder and low-temperature soldering behavior on aluminum alloy. Master' Thesis, Taiyuan University of Technology, 2018 (in Chinese).
马乐. Sn9Zn纳米复合焊料制备及其低温钎焊铝合金行为. 硕士学位论文, 太原理工大学, 2018.
89 Hsin J P, Chao Y L, Udit S M, et al. Materials Sciences and Applications, 2011, 2, 1480.
90 Lina C Y, Choua J H, Lee Y G, et al. Journal of Alloys and Compounds, 2009, 470, 328.
[1] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[2] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[3] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[4] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[5] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[8] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[9] 张兵宪, 杜明科, 雷龙宇, 张敏, 张志强. 补焊工艺对30CrMnSiA接头微观组织及性能的影响研究[J]. 材料导报, 2023, 37(16): 22020034-5.
[10] 常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
[11] 孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
[12] 赵吉康, 肖平安, 顾景洪, 钟斯远. TiCNp增强高铬铸铁复合材料的制备与性能[J]. 材料导报, 2023, 37(13): 21110021-5.
[13] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[14] 张帆, 薛松柏, 王博, 黄智恒, 龙伟民. 钕对ER5183铝合金焊丝及接头性能与组织的影响研究[J]. 材料导报, 2023, 37(11): 21080188-5.
[15] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed