Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020006-9    https://doi.org/10.11896/cldb.22020006
  高分子与聚合物基复合材料 |
有机污染土壤微波修复技术中吸波剂的研究进展
吴雷1, 吴红艳1, 邱丝雯1, 周军1,*, 张秋利1, 田玮2
1 西安建筑科技大学化学与化工学院,西安 710055
2 钢铁工业环境保护国家重点实验室,北京 100088
Advances on Absorbers Used in Microwave Remediation Technology of Organic Contaminated Soil
WU Lei1, WU Hongyan1, QIU Siwen1, ZHOU Jun1,*, ZHANG Qiuli1, TIAN Wei2
1 School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing 100088, China
下载:  全 文 ( PDF ) ( 10151KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土壤颗粒介电系数小,在微波修复过程中难以将微波能高效地转化为热能,使得有机污染土壤很难达到较为理想的修复温度,导致污染物去除效率较低。通过加入吸波剂可改善污染土壤整体吸波性能,在吸波剂“热点”效应作用下,污染土壤的升温速率和修复终温均得到显著改善,明显提高了污染土壤中有机污染物的去除效率。此外,某些具有氧化或催化作用的吸波剂也可降解污染土壤中的有机污染物,有利于有机污染物的去除。本文以适用于微波修复有机污染土壤的吸波剂为研究对象,总结了吸波剂的作用、种类和选择依据,阐述了现有微波修复的工业应用和存在的问题,提出了吸波剂的未来研究方向,以期为微波修复土壤技术的推广和应用提供有益的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴雷
吴红艳
邱丝雯
周军
张秋利
田玮
关键词:  微波修复  有机污染土壤  吸波剂  “热点”效应  氧化/催化降解    
Abstract: In the process of microwave remediation of organic contaminated soil, microwave energy could not be converted into heat energy due to the low dielectric co-efficient of soil particles. Therefore, it is difficult to reach an ideal temperature for remediation, resulting in a low removal efficiency of contaminants. The overall microwave absorption performance of contaminated soil can be improved by adding absorbers. Under their ‘hot spots' effect, the heating rate and final remediation temperature of the soil are significantly improved, which significantly increases the removal efficiency of organic pollutants. In addition, some absorbers with oxidation or catalytic effect can also degrade the organic pollutants in contaminated soil, which are in favor of the removal of organic pollutants. In this paper, we focus on the absorber that is suitable for microwave remediation of organic contaminated soil, and summarize its function, selection criteria, and absorber type. Then we describe the industrial applications and problems of microwave remediation, and propose the future research direction of absorbers, aiming at providing useful reference for the promotion and application of microwave soil remediation technology.
Key words:  microwave remediation    organic-contaminated soil    absorbers    ‘hot spots' effect    oxidative/catalytic degradation
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TQ028.7  
基金资助: 陕西省创新能力支撑计划(2020TD-028);钢铁工业环境保护国家重点实验室开放基金课题(YZC2019ky01);榆林市科技计划项目(CXY-2020-058);碑林区科技计划项目(GX2133);西安建筑科技大学科技基金(ZR21065)
通讯作者:  *周军,博士,三级教授,博士研究生导师,化学与化工学院副院长。主要从事煤化工新技术(煤清洁转化分级利用)、化工冶金新材料开发、贵金属冶金及资源综合利用等领域的研究与教学工作。主持或参与国家自然科学基金、国家科技支撑计划、国家“973”前期研究计划、陕西省“13115”重大科技创新、陕西省自然科学重大基础研究计划等多项科研项目,发表研究论文100余篇,授权国家专利30余件,出版教材4部(其中任主编2部)。曾获陕西省科学技术一等奖、中国产学研合作创新与促进奖一等奖、中国有色金属工业科学技术奖一等奖、陕西高等学校科学技术奖二等奖、榆林市科学技术一等奖、西安建筑科技大学科学研究优秀成果奖一等奖等多项奖励。荣获第二届“全国高校冶金院长奖”提名奖、“濮耐”优秀青年教师、西安建筑科技大学优秀党务工作者、优秀共产党员、“教坛新秀”等荣誉称号。 zhoujun@xauat.edu.cn   
作者简介:  吴雷,博士(后),讲师/工程师。主要从事低品位能源高效清洁转化利用、碳基多孔材料制备及其功能化应用等领域的科研工作。近五年先后主持和参与陕西省自然科学基础研究计划重大基础研究项目、陕西省自然科学基础研究计划陕煤联合基金项目、陕西省创新能力支撑计划项目、钢铁工业环境保护国家重点实验室开放基金课题、陕西省教育厅科研计划项目及企业横向等多项科研项目。以第一作者或通信作者在Chemical Engineering Journal、Journal of Cleaner Production、Fuel、Waste Management、《化工学报》《中国环境科学》《材料导报》等知名期刊累计发表学术论文20余篇,授权国家专利15件、软件著作权1件。曾获陕西高等学校科学技术奖二等奖、西安建筑科技大学研究优秀成果奖一等奖、陕西省第五届研究生创新成果展二等奖等多项科研奖励。
引用本文:    
吴雷, 吴红艳, 邱丝雯, 周军, 张秋利, 田玮. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 22020006-9.
WU Lei, WU Hongyan, QIU Siwen, ZHOU Jun, ZHANG Qiuli, TIAN Wei. Advances on Absorbers Used in Microwave Remediation Technology of Organic Contaminated Soil. Materials Reports, 2023, 37(19): 22020006-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020006  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020006
1 Food and Agriculture Organization of the United Nations. Global assessment of soil pollution, 2021.
2 Superfund Remedy Report 16th Edition. EPA United States Environmental Protection Agency, 2020.
3 The national soil pollution status survey bulletin. Ministry of Environmental Protection, 2014 (in Chinese).
全国土壤污染状况调查公报. 环境保护部, 2014.
4 Caniani D, Caivano M, Mazzone G, et al. Science of the Total Environment, 2021, 800, 149393.
5 Wu T, Liao X Y, Zou Y T, et al. Journal of Hazardous Materials, 2022, 425, 127973.
6 Shi Z M, Liu J H, Tang Z W, et al. Applied Soil Ecology, 2020, 147, 103377.
7 Zhou Z, Liu X T, Sun K, et al. Chemical Engineering Journal, 2019, 372, 836.
8 Mohanty S S, Das A P. Geomicrobiology, DOI:10. 1080/01490451. 2021. 1998255.
9 Wang L, Gao H, Wang M, et al. Journal of Hazardous Materials, 2022, 424, 127305.
10 Trine L S D, Davis E L, Roper C, et al. Environmental Science & Technology, 2019, 53(8), 4460.
11 Oba B T, Zheng X, Aborisade M A, et al. Journal of Environmental Management, 2021, 285, 112063.
12 Li X C, He W, Dd M J, et al. International Journal of Environmental Research and Public Health, 2021, 18(16), 8794.
13 Lee C L, Tsai C H, Jou C J G. Sustainability, 2020, 12(17), 6862.
14 Li S, Zhang G, Zhang W, et al. Chemical Engineering Journal, 2017, 326, 756.
15 Zhou J, Wu L, Liang K, et al. Materials Reports, 2019, 33(1), 191 (in Chinese).
周军, 吴雷, 梁坤, 等. 材料导报, 2019, 33(1), 191.
16 Choi B, Lee S, Jho E H. Applied Biological Chemistry, 2020, 63, 83.
17 Verma P, Samanta S K. Environmental Chemistry Letters, 2018, 16(3), 969.
18 Luo H, Wang H, Kong L Z, et al. Journal of Hazardous Materials, 2019, 377, 341.
19 Falciglia P P, Guidi De G, Catalfo A, et al. Chemical Engineering Journal, 2016, 296, 162.
20 Zhou C H, Zeng W L, Wang S H, et al. Water, Air, & Soil Pollution, 2022, 233(1), 1.
21 Kim T, Lee J, Lee K H. RSC Advances, 2016, 6(29), 24667.
22 Zhou J, Wu L, Zhou J J, et al. Chemical Industry and Engineering Progress, 2019, 38(9), 4060 (in Chinese).
周军, 吴雷, 周晶晶, 等. 化工进展, 2019, 38(9), 4060.
23 Wu L, Peng B, Zhou J, et al. Materials Reports, 2020, 34(23), 23009 (in Chinese).
吴雷, 彭犇, 周军, 等. 材料导报, 2020, 34(23), 23009.
24 Sun Y, Iris K M, Tsang D C W, et al. Chemical Engineering Journal, 2020, 398, 125505.
25 Falciglia P P, Roccaro P, Bonanno L, et al. Renewable and Sustainable Energy Reviews, 2018, 95, 147.
26 Sun B, Hu Y, Cheng H. Chemical Engineering Journal, 2020, 391, 123550.
27 Sivagami K, Padmanabhan K, Joy A C, et al. Journal of Environmental Management, 2019, 230, 151.
28 Zhou C H, Wang S H, Huang Y L. Polish Journal of Environmental Studies, 2020, 29(2), 1493.
29 Lu J, Wei X D, Chang Y, et al. Journal of Chemical Technology and Biotechnology, 2016, 91(4), 985.
30 Zhu C Y, Zhu F X, Liu C, et al. Environmental Science & Technology, 2018, 52(15), 8548.
31 Lominchar M A, Santos A, Miguel D E, et al. Science of the Total Environment, 2018, 622, 41.
32 Kan H S, Wu D, Wang T C, et al. Chemical Engineering Journal, 2021, 417, 127916.
33 Zhou H Y, Hu L, Wan J Z, et al. Chemical Engineering Journal, 2016, 284, 54.
34 Neto P, Campos A L P S, Journal of Communication and Information Systems, 2020, 35(1), 208.
35 Kasgoz A, Korkmaz M, Durmus A. Polymer, 2019, 180, 121672.
36 Lafaille R, Bozkurt Y C, Pruitt E, et al. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100116.
37 Tian W, Wu H Y, Wu L, et al. International Journal of Environmental Science and Technology, 2022, 19, 5451.
38 Yang Z Y, Yia H H, Tang X L, et al. Chemical Engineering Journal, 2017, 319, 191.
39 Li D W, Zhang Y B, Quan X, et al. Environmental Science, 2009, 30(2), 557(in Chinese).
李大伟, 张耀斌, 全燮, 等. 环境科学, 2009, 30(2), 557.
40 Zhou H, Lin L, Wang L, et al. Fresenius Environmental Bulletin, 2012, 21(5a), 1232.
41 Wang Z, Yu C, Huang H W, et al. Nano Energy, 2021, 85, 106027.
42 Apul O G, Delgado A G, Kidd J, et al. Environmental Science:Nano, 2016, 3(5), 997.
43 Liu G Q, Chen J, Pan P P, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3), 1.
44 Wei S N, Yan R S, Shi B, et al. Journal of Industrial Textiles, 2019, 49(1), 58.
45 Xue C, Mao Y, Wang W, et al. Journal of Environmental Sciences, 2019, 81, 119.
46 Hao Y, Yang S H, Ling C, et al. Infrared Physics & Technology, 2021, 115, 103735.
47 Sun Y, Wang Y J, Ma H J, et al. Carbon, 2021, 178, 515.
48 Chen J, Zhong D L, Hou H J, et al. Chemical Engineering Journal, 2016, 294, 246.
49 Zhao H, Zhou R, Zhao M Y, et al. Agricultural Science & Technology, 2015, 16(4), 750.
50 Yu J H, Yu J Y, Ying T P, et al. Journal of Alloys and Compounds, 2020, 838, 155629.
51 Chen J, Pan H, Hou H J, et al. Chemical Engineering Journal, 2017, 323, 444.
52 Wang X, Zhong D L, Hou H J, et al. Chemical Engineering Journal, 2016, 304, 747.
53 Li F, Zhang Y, Wang S, et al. Chemical Engineering Journal, 2020, 385, 123946.
54 Lin Z R, Zhao L, Dong Y H. Environmental Technology, 2013, 34(5), 637.
55 Liu X, Yu G. Chemosphere, 2006, 63(2), 228.
56 Lin L, Chen J, Wang L L, et al. Environmental Science, 2010, 29(3), 421 (in Chinese).
林莉, 陈静, 王玲丽, 等. 环境化学, 2010, 29(3), 421.
57 Chen Y L, Ai Z H, Zhang L Z. Journal of Hazardous Materials, 2012, 235, 92.
58 Yin C, Cai J J, Gao L F, et al. Journal of Hazardous Materials, 2016, 305, 15.
59 Miao D, Zhao S, Zhu K C, et al. Chemosphere, 2020, 253, 126679.
60 Peng L B, Deng D Y, Ye F T. Journal of Soils and Sediments, 2016, 16(1), 28.
61 Falciglia P P, Giustra M G, Vagliasindi F G A. Chemical Ecology, 2011, 27(1), 119.
62 Falciglia P P, Vagliasindi F G A. Journal of Soils and Sediments, 2016, 16(4), 1330.
63 Li D W, Zhang Y B, Quan X, et al. Journal of Environmental Sciences, 2009, 21(9), 1290.
64 Krouzek J, Durdak V, Hendrych J, et al. Chemical Engineering and Processing-Process Intensification, 2018, 130, 53.
65 Chien Y C. Journal of Hazardous Materials, 2012, 199, 457.
66 Yi Y M, Park S, Munster C, et al. Water, Air, & Soil Pollution, 2016, 227(4), 1.
67 Kawala Z, Atamańczuk T. Environmental Science & Technology, 1998, 32(17), 2602.
68 Falciglia P P, Scandura P, Vagliasindi F G A. Journal of Geochemical Exploration, 2017, 174, 91.
69 Falciglia P P, Mancuso G, Scandura P, et al. Separation and Purification Technology, 2015, 156, 480.
70 Ngole-Jeme V M. Applied Sciences, 2019, 9(17), 3447.
71 Vidonish J E, Alvarez P J J, Zygourakis K. Industrial & Engineering Chemistry Research, 2018, 57(10), 3489.
72 Kiersch K, Kruse J, Regier T Z, et al. Thermochimica Acta, 2012, 537, 36.
73 Terefe T, Mariscal-Sancho I, Peregrina F, et al. Geoderma, 2008, 143(3-4), 273.
74 Calvert C A, Suib S L. Journal of Soils and Sediments, 2007, 7(3), 147.
75 Singh S K, Haritash A K. International Journal of Environmental Science and Technology, 2019, 16(10), 6489.
76 Wang X, Zhong D L, Hou H J, et al. Chemical Engineering Journal, 2016, 304, 747.
77 Hilber I, Bastos A C, Loureiro S, et al. Journal of Environmental Engineering and Landscape Management, 2017, 25(2), 86.
78 Tang J W, Zhang S D, Zhang X T, et al. Science of the Total Environment, 2020, 731, 138938.
[1] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[2] 黄晓寒, 程华, 郑子云, 牛梓蓉, 张左群. 含铁氧体陶粒骨料电磁波损耗模型与性能研究[J]. 材料导报, 2021, 35(22): 22027-22032.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed