Abstract: Protein crystallization is important for the purification, preservation and structural study of protein. Since protein crystallization is susceptible to physical, chemical and biological factors, the process of protein crystal formation is difficult to regulate, the crystallization efficiency is random, and the crystallization yield is low, which limits the practical application of protein crystallization. Therefore, the study of method for promoting protein crystallization can not only improve the efficiency and controllability of protein crystallization process, but also effectively advance the fields of protein structure analysis and drug development. This paper summarizes the representative methods and techniques for promoting protein crystallization, classifies the mechanisms associated with various approaches, and analyzes and forecasts the research methods for promoting protein crystallization.
1 McPherson A, Gavira J A. Acta Crystallographica Section F-Structural Biology Communications, 2014, 70, 2. 2 Gorrec F. The Biochemist, 2021, 43(1), 36. 3 Lu H M, Yin D C, Liu Y M, et al. International Journal of Molecular Sciences, 2012, 13(8), 9514. 4 Gavira J A. Archives of Biochemistry and Biophysics, 2016, 602, 3. 5 McPherson A. Crystallization of biological macromolecules, Cold Spring Harbor Laboratory Press, USA, 1999. 6 Bray T, Kim L, Askew R, et al. Journal of Applied Crystallography, 1998, 31, 515. 7 Elenska P P, Dimitrov I L. Phase Transitions, 2021, 94, 935. 8 Zhang C Y, Yin D C, Lu Q Q, et al. Crystal Growth & Design, 2008, 8(12), 4227. 9 Nakamura A, Ohtsuka J, Kashiwagi T, et al. Scientific Reports, 2016, 6(1), 1. 10 Wang Y, Han Y, Pan J, et al. Microgravity Science and Technology, 1996, 9(4), 281. 11 Nakamura A, Ohtsuka J, Miyazono K, et al. Crystal Growth & Design, 2012, 12(3), 1141. 12 Lin S X, Zhou M, Azzi A, et al. Biochemical and Biophysical Research Communications, 2000, 275(2), 274. 13 Maki S, Tanimoto Y, Udagawa C, et al. Japanese Journal of Applied Physics, 2016, 55(3), 035505. 14 Pareja-Rivera C, Cuéllar-Cruz M, Esturau-Escofet N, et al. Crystal Growth & Design, 2017, 17(1), 135. 15 Surade S, Ochi T, Nietlispach D, et al. Crystal Growth & Design, 2010, 10(2), 691. 16 Huang L J, Cao H L, Ye Y J, et al. CrystEngComm, 2015, 17(6), 1237. 17 Martínez-Caballero S, Cuéllar-Cruz M, Demitri N, et al. Crystal Growth & Design, 2016, 16(3), 1679. 18 Koizumi H, Uda S, Fujiwara K, et al. Journal of Applied Crystallography, 2015, 48(5), 1507. 19 Sazaki G, Moreno A, Nakajima K. Journal of Crystal Growth, 2004, 262, 499. 20 Hammadi Z, Veesler S. Progress in Biophysics & Molecular Biology, 2009, 101, 38. 21 Mahon B P, Kurian J J, Lomelino C L, et al. Crystal Growth & Design, 2016, 16, 6214. 22 Lu Q Q, Yin D C, Liu Y M, et al. Journal of Applied Crystallography, 2010, 43(3), 473. 23 Lu Q Q, Zhang B, Tao L, et al. Crystal Growth & Design, 2016, 16(9), 4869. 24 Kakinouchi K, Adachi H, Matsumura H, et al. Journal of Crystal Growth, 2006, 292(2), 437. 25 Kitayama H, Yoshimura Y, So M, et al. Biochimica et Biophysica Acta, 2013, 1834(12), 2640. 26 Crespo R, Martins P M, Gales L, et al. Journal of Applied Crystallography, 2010, 43(6), 1419. 27 Zhang C Y, Wang Y, Schubert R, et al. Crystal Growth & Design, 2016, 16(2), 705. 28 Zhang C Y, Liu Y, Tian X H, et al. International Journal of Biological Macromolecules, 2018, 112, 841. 29 Iefuji N, Murai R, Maruyama M, et al. Journal of Crystal Growth, 2011, 318(1), 741. 30 Murai R, Yoshikawa H Y, Takahashi Y, et al. Applied Physics Letters, 2010, 96(4), 043702. 31 Mittl P, Berry A, Scrutton N, et al. Acta Crystallographica Section D:Biological Crystallography, 1994, 50(2), 228. 32 Linnevers C J, Mcgrath M E, Armstrong A, et al. Protein Science, 1997, 6(4), 919. 33 Seemann K M, Kiefersauer R, Jacob U, et al. The Journal of Physical Chemistry B, 2012, 116(33), 9873. 34 Gosavi R A, Mueser T C, Schall C A. Acta Crystallographica Section D:Biological Crystallography, 2008, 64(5), 506. 35 Chen R Q, Cheng Q D, Chen J J, et al. CrystEngComm, 2017, 19, 860. 36 Pittz E P, Timasheff S N. Biochemistry, 1978, 17(4), 615. 37 Lu G Y, Hua Z Q. Fundamentals of biomolecular crystallography, Peking University Press, China, 1994 (in Chinese). 卢光莹, 华子千. 生物大分子晶体学基础, 北京大学出版社, 1994. 38 Tanaka S, Ataka M. The Journal of Chemical Physics, 2002, 117(7), 3504. 39 Vivares D, Bonneté F. The Journal of Physical Chemistry B, 2004, 108(20), 6498. 40 Atha D H, Ingham K C. Journal of Biological Chemistry, 1981, 256(23), 12108. 41 Arakawa T, Timasheff S N. Biochemistry, 1985, 24(24), 6756. 42 Zhang X, El-Bourawi M S, Wei K, et al. Biotechnology Journal:Healthcare Nutrition Technology, 2006, 1(11), 1302. 43 Zheng B, Roach L S, Ismagilov R F. Journal of the American Chemical Society, 2003, 125(37), 11170. 44 McPherson A, Nguyen C, Cudney R, et al. Crystal Growth & Design, 2011, 11(5), 1469. 45 Maury O, Talon R, Alsalman Z, et al. Inorganic Chemistry, 2021, 60(20), 15208. 46 Gillespie C, Asthagiri D, Lenhoff A. Crystal Growth & Design, 2014, 14(1), 46. 47 Thakur A S, Robin G, Guncar G, et al. PLoS One, 2007, 2(10), e1091. 48 Vekilov P G. In:AIP Conference Proceedings. Dalian, China, 2010, pp. 60. 49 Debenedetti P G. Metastable liquids:concepts and principles, Princeton University Press, USA, 1996. 50 Nanev C N, Saridakis E, Chayen N E. Scientific Reports, 2017, 7(1), 1. 51 D'Arcy A, Mac S A, Haber A. Acta Crystallographica Section D:Biolo-gical Crystallography, 2003, 59(7), 1343. 52 Saridakis E, Chayen N E. Trends in Biotechnology, 2009, 27(2), 99. 53 Govada L, Leese H S, Saridakis E, et al. Scientific Reports, 2016, 6(1), 1. 54 van Meel J A, Sear R P, Frenkel D. Physical Review Letters, 2010, 105(20), 205501. 55 Shah U V, Williams D R, Heng J Y. Crystal Growth & Design, 2012, 12(3), 1362. 56 Briseno A L, Mannsfeld S C, Ling M M, et al. Nature, 2006, 444(7121), 913. 57 Mcpherson A, Shlicht P. Science, 1988, 239, 385. 58 McPherson A, Shlichta P J. Journal of Crystal Growth, 1987, 85(1-2), 206. 59 Atkinson J D, Murray B J, Woodhouse M T, et al. Nature, 2013, 498(7454), 355. 60 Chadwick K, Chen J, Myerson A S, et al. Crystal Growth & Design, 2012, 12(3), 1159. 61 Cheng S, Gao L, Woo R, et al. Journal of Crystal Growth, 2008, 310(3), 562. 62 Olmsted B K, Ward M D. CrystEngComm, 2011, 13(4), 1070. 63 Urbanus J, Laven J, Roelands C M, et al. Crystal Growth & Design, 2009, 9(6), 2762. 64 Delmas T, Roberts M M, Heng J Y. Journal of Adhesion Science & Technology, 2011, 25, 357. 65 Chen W Q, Cheng T N H, FaKhaw L, et al. Separation and Purification Technology, 2021, 255, 117384. 66 Gao A, Wu Q, Wang D, et al. Advanced Materials, 2016, 28(3), 579. 67 Robert M, Lefaucheux F. Journal of Crystal Growth, 1988, 90, 358. 68 Biertümpfel C, Basquin J, Suck D, et al. Acta Crystallographica Section D:Biological Crystallography, 2002, D58, 1657. 69 Garcia-Ruiz J M, Gonzalez-Ramirez L A, Gavira J A, et al. Acta Crystallographica Section D:Biological Crystallography, 2002, D58, 1638. 70 Reddy S M, Phan Q T, El-Sharif H, et al. Biomacromolecules, 2012, 13(12), 3959. 71 Xing Y, Hu Y, Jiang L, et al. Crystal Growth & Design, 2015, 15(10), 4932. 72 Saridakis E, Khurshid S, Govada L, et al. Proceedings of the National Academy of Sciences, 2011, 108(27), 11081. 73 Hu Y, Chen Z, Fu Y, et al. Nature Communications, 2015, 6(1), 1. 74 Brady R A, Brooks N J, Cicuta P, et al. Nano Letters, 2017, 17(5), 3276. 75 Simmons C R, Zhang F, MacCulloch T, et al. Journal of the American Chemical Society, 2017, 139(32), 11254. 76 Seeman N C, Gang O. MRS Bulltin, 2017, 42(12), 904. 77 Hernandez C, Birktoft J J, Ohayon Y P, et al. Cell Chemical Biology, 2017, 24(11), 1401. 78 Zheng J, Birktoft J J, Chen Y, et al. Nature, 2009, 461(7260), 74. 79 Zhang B, Mei A R, Isbell M A, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44240. 80 Zhang B, Wang Y, Thi S, et al. Crystals, 2019, 9(4), 186.