Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22020032-7    https://doi.org/10.11896/cldb.22020032
  高分子与聚合物基复合材料 |
促进蛋白质结晶的方法研究进展
张波*
太原科技大学环境与资源学院,太原 030024
Technological Advances in Promoting Protein Crystallization
ZHANG Bo*
School of Enviroment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 34740KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蛋白质结晶对蛋白质的提纯、保存以及结构解析等具有重要意义。由于蛋白质结晶易受到物理、化学和生物等多种因素的影响,导致蛋白质晶体形成过程不易调控,结晶效率随机并且结晶产率低,限制了蛋白质结晶的实际应用。因此,研究促进蛋白质结晶的方法不仅可以提高蛋白质结晶效率及结晶过程的可控性,还能够有效推动蛋白质结构解析及药物开发等领域的发展。本文总结了促进蛋白质结晶的代表性方法与技术,分类介绍了不同方法相关的机制,并对促进蛋白质结晶的研究方法进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张波
关键词:  蛋白质  结晶  促进方法  物理  化学  异相成核    
Abstract: Protein crystallization is important for the purification, preservation and structural study of protein. Since protein crystallization is susceptible to physical, chemical and biological factors, the process of protein crystal formation is difficult to regulate, the crystallization efficiency is random, and the crystallization yield is low, which limits the practical application of protein crystallization. Therefore, the study of method for promoting protein crystallization can not only improve the efficiency and controllability of protein crystallization process, but also effectively advance the fields of protein structure analysis and drug development. This paper summarizes the representative methods and techniques for promoting protein crystallization, classifies the mechanisms associated with various approaches, and analyzes and forecasts the research methods for promoting protein crystallization.
Key words:  protein    crystallization    promotion method    physics    chemistry    heterogeneous nucleation
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O78  
基金资助: 太原科技大学博士科研启动基金(20192046;20192051);山西省高等学校科技创新项目(2020L0364);山西省自然科学基金(202203021212310)
通讯作者:  *张波,太原科技大学环境与资源学院讲师。2012年晋中学院化学专业本科毕业,2015年温州大学无机化学专业硕士毕业,2019年中国人民大学化学专业博士毕业后到太原科技大学工作至今。目前主要从事蛋白质结晶和DNA纳米材料等方面的研究工作。发表论文6篇、授权专利3项,相关研究成果发表在ACS Appl.Mater.Interfaces、Crystals等刊物。bozhang@tyust.edu.cn   
引用本文:    
张波. 促进蛋白质结晶的方法研究进展[J]. 材料导报, 2023, 37(19): 22020032-7.
ZHANG Bo. Technological Advances in Promoting Protein Crystallization. Materials Reports, 2023, 37(19): 22020032-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020032  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22020032
1 McPherson A, Gavira J A. Acta Crystallographica Section F-Structural Biology Communications, 2014, 70, 2.
2 Gorrec F. The Biochemist, 2021, 43(1), 36.
3 Lu H M, Yin D C, Liu Y M, et al. International Journal of Molecular Sciences, 2012, 13(8), 9514.
4 Gavira J A. Archives of Biochemistry and Biophysics, 2016, 602, 3.
5 McPherson A. Crystallization of biological macromolecules, Cold Spring Harbor Laboratory Press, USA, 1999.
6 Bray T, Kim L, Askew R, et al. Journal of Applied Crystallography, 1998, 31, 515.
7 Elenska P P, Dimitrov I L. Phase Transitions, 2021, 94, 935.
8 Zhang C Y, Yin D C, Lu Q Q, et al. Crystal Growth & Design, 2008, 8(12), 4227.
9 Nakamura A, Ohtsuka J, Kashiwagi T, et al. Scientific Reports, 2016, 6(1), 1.
10 Wang Y, Han Y, Pan J, et al. Microgravity Science and Technology, 1996, 9(4), 281.
11 Nakamura A, Ohtsuka J, Miyazono K, et al. Crystal Growth & Design, 2012, 12(3), 1141.
12 Lin S X, Zhou M, Azzi A, et al. Biochemical and Biophysical Research Communications, 2000, 275(2), 274.
13 Maki S, Tanimoto Y, Udagawa C, et al. Japanese Journal of Applied Physics, 2016, 55(3), 035505.
14 Pareja-Rivera C, Cuéllar-Cruz M, Esturau-Escofet N, et al. Crystal Growth & Design, 2017, 17(1), 135.
15 Surade S, Ochi T, Nietlispach D, et al. Crystal Growth & Design, 2010, 10(2), 691.
16 Huang L J, Cao H L, Ye Y J, et al. CrystEngComm, 2015, 17(6), 1237.
17 Martínez-Caballero S, Cuéllar-Cruz M, Demitri N, et al. Crystal Growth & Design, 2016, 16(3), 1679.
18 Koizumi H, Uda S, Fujiwara K, et al. Journal of Applied Crystallography, 2015, 48(5), 1507.
19 Sazaki G, Moreno A, Nakajima K. Journal of Crystal Growth, 2004, 262, 499.
20 Hammadi Z, Veesler S. Progress in Biophysics & Molecular Biology, 2009, 101, 38.
21 Mahon B P, Kurian J J, Lomelino C L, et al. Crystal Growth & Design, 2016, 16, 6214.
22 Lu Q Q, Yin D C, Liu Y M, et al. Journal of Applied Crystallography, 2010, 43(3), 473.
23 Lu Q Q, Zhang B, Tao L, et al. Crystal Growth & Design, 2016, 16(9), 4869.
24 Kakinouchi K, Adachi H, Matsumura H, et al. Journal of Crystal Growth, 2006, 292(2), 437.
25 Kitayama H, Yoshimura Y, So M, et al. Biochimica et Biophysica Acta, 2013, 1834(12), 2640.
26 Crespo R, Martins P M, Gales L, et al. Journal of Applied Crystallography, 2010, 43(6), 1419.
27 Zhang C Y, Wang Y, Schubert R, et al. Crystal Growth & Design, 2016, 16(2), 705.
28 Zhang C Y, Liu Y, Tian X H, et al. International Journal of Biological Macromolecules, 2018, 112, 841.
29 Iefuji N, Murai R, Maruyama M, et al. Journal of Crystal Growth, 2011, 318(1), 741.
30 Murai R, Yoshikawa H Y, Takahashi Y, et al. Applied Physics Letters, 2010, 96(4), 043702.
31 Mittl P, Berry A, Scrutton N, et al. Acta Crystallographica Section D:Biological Crystallography, 1994, 50(2), 228.
32 Linnevers C J, Mcgrath M E, Armstrong A, et al. Protein Science, 1997, 6(4), 919.
33 Seemann K M, Kiefersauer R, Jacob U, et al. The Journal of Physical Chemistry B, 2012, 116(33), 9873.
34 Gosavi R A, Mueser T C, Schall C A. Acta Crystallographica Section D:Biological Crystallography, 2008, 64(5), 506.
35 Chen R Q, Cheng Q D, Chen J J, et al. CrystEngComm, 2017, 19, 860.
36 Pittz E P, Timasheff S N. Biochemistry, 1978, 17(4), 615.
37 Lu G Y, Hua Z Q. Fundamentals of biomolecular crystallography, Peking University Press, China, 1994 (in Chinese).
卢光莹, 华子千. 生物大分子晶体学基础, 北京大学出版社, 1994.
38 Tanaka S, Ataka M. The Journal of Chemical Physics, 2002, 117(7), 3504.
39 Vivares D, Bonneté F. The Journal of Physical Chemistry B, 2004, 108(20), 6498.
40 Atha D H, Ingham K C. Journal of Biological Chemistry, 1981, 256(23), 12108.
41 Arakawa T, Timasheff S N. Biochemistry, 1985, 24(24), 6756.
42 Zhang X, El-Bourawi M S, Wei K, et al. Biotechnology Journal:Healthcare Nutrition Technology, 2006, 1(11), 1302.
43 Zheng B, Roach L S, Ismagilov R F. Journal of the American Chemical Society, 2003, 125(37), 11170.
44 McPherson A, Nguyen C, Cudney R, et al. Crystal Growth & Design, 2011, 11(5), 1469.
45 Maury O, Talon R, Alsalman Z, et al. Inorganic Chemistry, 2021, 60(20), 15208.
46 Gillespie C, Asthagiri D, Lenhoff A. Crystal Growth & Design, 2014, 14(1), 46.
47 Thakur A S, Robin G, Guncar G, et al. PLoS One, 2007, 2(10), e1091.
48 Vekilov P G. In:AIP Conference Proceedings. Dalian, China, 2010, pp. 60.
49 Debenedetti P G. Metastable liquids:concepts and principles, Princeton University Press, USA, 1996.
50 Nanev C N, Saridakis E, Chayen N E. Scientific Reports, 2017, 7(1), 1.
51 D'Arcy A, Mac S A, Haber A. Acta Crystallographica Section D:Biolo-gical Crystallography, 2003, 59(7), 1343.
52 Saridakis E, Chayen N E. Trends in Biotechnology, 2009, 27(2), 99.
53 Govada L, Leese H S, Saridakis E, et al. Scientific Reports, 2016, 6(1), 1.
54 van Meel J A, Sear R P, Frenkel D. Physical Review Letters, 2010, 105(20), 205501.
55 Shah U V, Williams D R, Heng J Y. Crystal Growth & Design, 2012, 12(3), 1362.
56 Briseno A L, Mannsfeld S C, Ling M M, et al. Nature, 2006, 444(7121), 913.
57 Mcpherson A, Shlicht P. Science, 1988, 239, 385.
58 McPherson A, Shlichta P J. Journal of Crystal Growth, 1987, 85(1-2), 206.
59 Atkinson J D, Murray B J, Woodhouse M T, et al. Nature, 2013, 498(7454), 355.
60 Chadwick K, Chen J, Myerson A S, et al. Crystal Growth & Design, 2012, 12(3), 1159.
61 Cheng S, Gao L, Woo R, et al. Journal of Crystal Growth, 2008, 310(3), 562.
62 Olmsted B K, Ward M D. CrystEngComm, 2011, 13(4), 1070.
63 Urbanus J, Laven J, Roelands C M, et al. Crystal Growth & Design, 2009, 9(6), 2762.
64 Delmas T, Roberts M M, Heng J Y. Journal of Adhesion Science & Technology, 2011, 25, 357.
65 Chen W Q, Cheng T N H, FaKhaw L, et al. Separation and Purification Technology, 2021, 255, 117384.
66 Gao A, Wu Q, Wang D, et al. Advanced Materials, 2016, 28(3), 579.
67 Robert M, Lefaucheux F. Journal of Crystal Growth, 1988, 90, 358.
68 Biertümpfel C, Basquin J, Suck D, et al. Acta Crystallographica Section D:Biological Crystallography, 2002, D58, 1657.
69 Garcia-Ruiz J M, Gonzalez-Ramirez L A, Gavira J A, et al. Acta Crystallographica Section D:Biological Crystallography, 2002, D58, 1638.
70 Reddy S M, Phan Q T, El-Sharif H, et al. Biomacromolecules, 2012, 13(12), 3959.
71 Xing Y, Hu Y, Jiang L, et al. Crystal Growth & Design, 2015, 15(10), 4932.
72 Saridakis E, Khurshid S, Govada L, et al. Proceedings of the National Academy of Sciences, 2011, 108(27), 11081.
73 Hu Y, Chen Z, Fu Y, et al. Nature Communications, 2015, 6(1), 1.
74 Brady R A, Brooks N J, Cicuta P, et al. Nano Letters, 2017, 17(5), 3276.
75 Simmons C R, Zhang F, MacCulloch T, et al. Journal of the American Chemical Society, 2017, 139(32), 11254.
76 Seeman N C, Gang O. MRS Bulltin, 2017, 42(12), 904.
77 Hernandez C, Birktoft J J, Ohayon Y P, et al. Cell Chemical Biology, 2017, 24(11), 1401.
78 Zheng J, Birktoft J J, Chen Y, et al. Nature, 2009, 461(7260), 74.
79 Zhang B, Mei A R, Isbell M A, et al. ACS Applied Materials & Interfaces, 2018, 10(51), 44240.
80 Zhang B, Wang Y, Thi S, et al. Crystals, 2019, 9(4), 186.
[1] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[2] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[3] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[6] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[7] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[8] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[9] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[10] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[11] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[12] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[13] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[14] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[15] 黄先奇, 李小龙, 冯驰. 多孔介质湿物理性质预测方法综述[J]. 材料导报, 2023, 37(5): 21080186-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed