Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21110003-10    https://doi.org/10.11896/cldb.21110003
  无机非金属及其复合材料 |
WC-Co硬质合金/CVD金刚石涂层刀具研究现状
范舒瑜1,2, 匡同春1,*, 林松盛2,*, 代明江2
1 华南理工大学材料科学与工程学院, 广州 510640
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室, 广州 510651
Research Progress on Cutting Tools Made from WC-Co Cemented Carbide Substrates and Coated with CVD Diamond
FAN Shuyu1,2, KUANG Tongchun1,*, LIN Songsheng2,*, DAI Mingjiang2
1 School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Key Laboratory of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
下载:  全 文 ( PDF ) ( 12083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学气相沉积(Chemical vapor deposition, CVD)金刚石涂层刀具具有高硬度、优异的耐磨性、良好的冲击韧性和化学稳定性,能满足高效率、高精度的加工要求,逐渐成为切削铝和高硅铝合金、碳纤维增强复合材料及石墨等轻质量高强度难加工材料的主流涂层刀具。
基于WC-Co硬质合金为基体的CVD金刚石涂层刀具在切削加工过程中容易发生CVD金刚石涂层的剥落,自主研发结合性能优良、长时间加工稳定的WC-Co硬质合金/CVD金刚石涂层刀具仍是该领域国内外发展的必然趋势。
目前,研究者为了提高WC-Co硬质合金/CVD金刚石涂层刀具的结合性能,采用化学刻蚀法和机械处理法相结合去除WC-Co硬质合金基体表层中的Co粘结相,发现其能增强涂层与基体的结合强度,但基体表层Co粘结相含量的减少容易导致基体中形成脆化层,降低基体的强度和韧性。为了减少基体的强度和韧性损失,研究者在WC-Co硬质合金基体和金刚石涂层之间制备稳定的含Co中间化合物或沉积中间层,成功阻挡Co粘结相的热扩散。除了上述方法外,研究者还通过调控金刚石涂层工艺参数和结构,将微米晶与纳米晶金刚石层叠相结合,来提高金刚石涂层刀具的摩擦学性能和涂层与基体间结合强度。
本文综述了WC-Co硬质合金/CVD金刚石涂层刀具的应用进展,明确了WC-Co硬质合金与CVD金刚石涂层间附着失效是刀具切削加工中最主要的失效形式,详细分析了影响附着失效的主要原因。在此基础上,着重介绍了各种优化工艺对增强涂层刀具性能影响的最新研究进展;指出了WC-Co硬质合金/CVD金刚石涂层刀具的性能受化学刻蚀、机械刻蚀、形成含钴化合物层、沉积中间层等基体前处理以及金刚石涂层工艺参数和结构的影响较大,对于不同牌号或不同厂家生产的同种牌号的WC-Co硬质合金基材,需要进行不同的表面前处理,而针对不同的切削加工材料,需要采用合适的金刚石涂层沉积工艺和结构以提高涂层与基材之间的结合强度,进而提高刀具的性能; 最后提出了研制一种普适性强的基体前处理、涂层工艺和结构创新策略,以实现不同应用场景下WC-Co硬质合金/CVD金刚石涂层刀具的高效长寿命切削,可能是未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范舒瑜
匡同春
林松盛
代明江
关键词:  化学气相沉积(CVD)  金刚石涂层  硬质合金  刀具  预处理  中间层  结合强度    
Abstract: Chemical vapour deposition (CVD) diamond-coated tools have high hardness, excellent wear resistance, good impact toughness, and chemical stability. These tools can meet the requirements of high efficiency and precision machining. Therefore, this technology has been used as commercial coating tools for light-weight, high-strength, and difficult-to-process materials, such as high-silicon aluminium alloys, carbon fiber-reinforced composite materials and graphite.
However, CVD diamond-coated tools based on WC-Co cemented carbide are prone to peeling off during the cutting process. Therefore, the development of WC-Co cemented carbide/CVD diamond-coated tools with excellent wear resistance and long-term processing stability is inevitable.
Recently, it has been reported that a combination of chemical etching and mechanical treatment can be used to remove the Co binder in the substrate, which enhances the adhesion strength of the diamond coating. Thereby, the bonding performance of WC-Co cemented carbide/CVD diamond-coated tools is improved. However, these techniques lead to the formation of a brittle layer and decreased substrate strength and toughness. A Co-containing compound or deposited intermediate layer, which can successfully block the Co binder, is formed between the WC-Co cemented carbide substrate and diamond-coating to prevent a reduction in substrate strength. Moreover, the tribological properties and adhesion strength of diamond-coated tools were also reported to be improved by adjusting the diamond layer's process parameters and structure and combining microcrystalline and nanocrystalline diamond layers.
Firstly, this paper reviews the current applications and existing problems related to WC-Co cemented carbide/CVD diamond-coated cutting tools. Subsequently, the main causes of tool adhesion failure are analysed. Based on the initial review of literature, the latest research progress in the performance improvement of coated tools by various optimisation processes is introduced. Furthermore, this paper presents different grades of WC-Co cemented carbide/CVD diamond-coated tools and the same grades sourced from different manufacturers that were greatly affected by the substrate pretreatment method, such as chemical etching, mechanical etching, the formation of a Co-containing compound or deposited intermediate layer, and the adjustment of the process parameters and structure of the diamond layers. In conclusion, it is proposed that obtaining a universal pretreatment and deposition technology for realising high-efficiency and long-life cutting of WC-Co cemented carbide/CVD diamond-coated tools for different application scenarios may be a future research prospect.
Key words:  chemical vapor deposition (CVD)    diamond coating    cemented carbide    tools    pretreatment    interlayer    adhesion strength
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG711  
基金资助: 广东省重点区域研发计划项目(2020B010185001);广州市科技计划项目(202007020008);广东省科技计划项目 (2020B1212060049);清远市科技计划项目合同书(2020KJJH002)
通讯作者:  *匡同春,1986年7月在中国矿业大学获得学士学位,1989年6月在华南理工大学获得硕士学位,1998年7月在华南理工大学获得博士学位。现为华南理工大学材料与工程学院教授,主要研究方向是先进PVD涂层技术、硬质合金刀具表面纳米工程、碳纳米材料制备与表征及CVD金刚石涂层。授权国家专利20余项;发表学术论文180余篇;主要参编著作2部;参与制定国家及地方标准4项。ktcscut@126.com
林松盛,教授级高级工程师,硕士研究生导师,现为广东省科学院新材料研究所真空镀膜研究室主任。1997年7月在广东工业大学获得学士学位,2006年7月在广东工业大学获得硕士学位,2016年在华南理工大学获得博士学位。主要从事利用气相沉积技术制备耐磨、减摩、防腐蚀和抗冲蚀等防护功能薄膜研究开发工作。主持及参加研究项目60多项;获得各级科技成果奖18项;授权专利共28项;发表论文170余篇,参编论著2本。linsongsheng@gdinm.com   
作者简介:  范舒瑜,2019年7月在乐山师范学院获得学士学位,现为华南理工大学和广东省科学院新材料研究所联合培养的硕士研究生,在匡同春教授和林松盛教授级高级工程师的指导下进行研究。主要研究方向为金刚石涂层刀具的制备及性能研究。
引用本文:    
范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
FAN Shuyu, KUANG Tongchun, LIN Songsheng, DAI Mingjiang. Research Progress on Cutting Tools Made from WC-Co Cemented Carbide Substrates and Coated with CVD Diamond. Materials Reports, 2023, 37(8): 21110003-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110003  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21110003
1 Du J, Zhang H, Geng Y, et al. Ceramics International, 2019, 45(15), 18155.
2 Boyer R R, Cotton J D, Mohaghege M, et al. Mrs Bulletin, 2015, 40(12), 1055.
3 Amanov A. Applied Surface Science, 2017, 477, 184.
4 Matsumoto S, Sato Y, Kamo M, et al. Japanese Journal of Applied Phy-sics, 1982, 21(4), L183.
5 Qi Z D. Physics, 1989, 18(6), 360 (in Chinese).
亓曾笃. 物理, 1989, 18(6), 360.
6 Huang Q, Yu D, Bo X, et al. Nature, 2014, 510(7504), 250.
7 Wang P, Shi K H, Gu J B, et al. Cemented Carbide, 2020, 37(5), 390 (in Chinese).
王鹏, 时凯华, 顾金宝, 等. 硬质合金, 2020, 37(5), 390.
8 Chen X, Narayan J. Journal of Applied Physics, 1993, 74(6), 4168.
9 Joshi P, Haque A, Gupta S, et al. Carbon, 2021, 171, 739.
10 Li X, He L, Li Y, et al. Micromachines, 2020, 11(719), 1.
11 Lu P, Gomez H, Xiao X, et al. Surface Coating and Technology, 2013, 215, 272.
12 Polini R, Barletta M, Rubino G, et al. Advance in Materials Science and Engineering, 2012, 2012, 151629.
13 Santos M C, Machado A R, Sales W F, et al. International Journal of Advanced Manufacturing Technology, 2016, 86(9), 3067.
14 Oliaei S N B, Karpat Y. The International Journal of Advanced Manufacturing Technology, 2017, 90(1), 819.
15 Chakravarthy G V, Chandran M, Bhattacharya S S, et al. Applied Surface Science, 2012, 261, 520.
16 Uddin G M, Jovia F M, Ghufran M, et al. International Journal of Advanced Manufacturing Technology, 2021, 112(5), 1461.
17 Prieske M, Hasselbruch H, Mehner A, et al. Surface Coating and Technology, 2019, 357, 1048.
18 Kumar R, Pattnaik S K, Minz J K, et al. Sādhanā, 2019, 44(8), 186.
19 Kremer A, Devillez A, Dominiak S, et al. Machining Science and Technology, 2008, 12(2), 214.
20 Ramasubranian K, Arunachalam N, Rao M R. Wear, 2018, 426, 1536.
21 Xiong Y H, Huang J. Carbon Technology, 2017, 36(2), 7 (in Chinese).
熊云虎, 黄健. 炭素技术, 2017, 36(2), 7.
22 Wan Z P, Yang D Y, Lu L S, et al. International Journal of Advanced Manufacturing Technology, 2016, 82(9), 1815.
23 Xu Y C, Chen K H, Wang S Q, et al. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2018, 232(5), 766.
24 Lei X L, Wang L, Shen B, et al. Materials, 2013, 6(8), 3128.
25 Wang H, Yang J, Sun F. Journal of Materials Processing Technology, 2020, 276, 116401.
26 Padture N P. Nature Materials, 2016, 15(8), 804.
27 Aamir M, Tolouri-rad M, Giasin K, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(5), 2289.
28 Liu D F, Tang Y J, Cong W L. Composite Structures, 2012, 94(4), 1265.
29 Feito N, Díaz-Álvarez J, Díaz-Álvarez A, et al. Materials, 2014, 7(6), 4258.
30 Fernández-Pérez J, Cantero J, Díaz-Álvarez J, et, al. Composite Structures, 2017, 178, 157.
31 Gaugel S, Sripathy P, Haeger A, et al. Composite Structures, 2016, 155, 173.
32 Wang X, Wang C, Shen X, et al. Wear, 2019, 418, 191.
33 Sousa V F C, Silva F J G. Coatings, 2020, 10, 235.
34 Zhang L, Zhong Z Q, Qiu L C, et al. Wear, 2019, 418, 133.
35 Skordaris G, Bouzakis K D, Charalampous P, et al. CIRP Annals- Manufacturing Technology, 2016, 65(1), 101.
36 Baker H. American Society for Metals, 1992, 3, 151.
37 Jian X G, Chen J. Acta Physica Sinica, 2015, 64(21), 368 (in Chinese).
简小刚, 陈军. 物理学报, 2015, 64(21), 368.
38 Mallika K, Ramamohan T R, Jagannadham K, et al. Philosophical Magazine Part B, 1999, 79(4), 593.
39 Chen X, Narayan J. Journal of Applied Physics, 1993, 74(6), 4168.
40 Hwang N M. Springer Nature, 2016, 60, 1.
41 Li X J, He L L, Li Y S, et al. Surface and Coatings Technology, 2019, 360, 20.
42 Jing H, Zhang J, Zhao S L, et al. Hot Working Technology, 2015, 44 (24), 40 (in Chinese).
景浩, 张钧, 赵时璐, 等. 热加工工艺, 2015, 44(24), 40.
43 Lin Z J, Zhang J Z, Li B S, et al. Applied Physics Letters, 2011, 98(12), 121914.
44 Gruen D M. Annual Review of Materials Science, 1999, 29, 211.
45 Peters M G, Cummings R H. U.S. Patent application, US5236740, 1993.
46 Xiong C, Li L J, Su D Y, et al. Surface Technology, 2018, 47(1), 203 (in Chinese).
熊超, 李烈军, 苏东艺, 等. 表面技术, 2018, 47(1), 203.
47 Shen X, Wang X, Sun F, et al. Diamond and Related Materials, 2017, 73, 7.
48 Polini R. Thin Solid Films, 2006, 515(1), 4.
49 Rugóczky P, Muránszky G, Lassú G, et al. Journal of Physics: Confe-rence Series, 2020, 1527(1), 012025.
50 Ma L, Yu X, Peng Z J, et al. IEEE Transactions on Plasma Science, 2011, 39(11), 3072.
51 Yi M K, Deng B, Xiao H, et al. Materials Research Express, 2019, 6(7), 076404.
52 Li L, Wei Q P, Ma L, et al. International Journal of Refractory Metals and Hard Materials, 2019, 87, 105173
53 Ma D D, Xue Y P, Gao J, et al. Applied Surface Science, 2020, 527, 146727.
54 Hei H, Shen Y, Ma J, et al. Vacuum, 2014, 109, 15.
55 Wang T, Zhang S Q, Jiang C L, et al. Diamond and Related Materials, 2018, 83, 126.
56 Fischer M, Chandran M, Akhvleniani R, et al. Diamond and Related Materials, 2016, 70, 167.
57 Peng J, Zeng J, Xiong C, et al. Journal of Alloys and Compounds, 2020, 835, 155035.
58 Petrikowsk K, Fenker M, Gäble J, et al. Diamond and Related Mate-rials, 2013, 33, 38.
59 Xu F, Xu J H, Yuen M F, et al. Diamond and Related Materials, 2013, 34(2), 70.
60 Xu Y, Wang T, Chen B, et al. Surface Coating and Technology, 2020, 397, 125975.
61 Wang T, Yang Y, Jiang C L, et al.In:Proceedings of 2017 2nd International Conference on Electrical and Electronics: Techniques and Applications. Beijing, 2017, pp. 134.
62 Bachmann P K, Hagemann H J, Lade, et al. Diamond and Related Materials, 1995, 4(5-6), 820.
63 Ma Y P. Preparation and application of diamond coated cutting tools. Master's Thesis, Shanghai Jiaotong University, China, 2007 (in Chinese).
马玉平. 金刚石涂层刀具制备及其应用. 硕士学位论文, 上海交通大学, 2007.
64 Wang X G. Preparation and application of high-performance nano-diamond films. Master's Thesis, Shanghai Jiaotong University, China, 2004 (in Chinese)
王学根. 高性能纳米金刚石薄膜的制备与应用. 硕士学位论文, 上海交通大学, 2004.
65 Zhang S Q, Wang T, Tang Y B. Integration Technology, 2017, 64(4), 10 (in Chinese).
张松全, 王 陶, 唐永炳. 集成技术, 2017, 6(4), 10.
66 Najar K A, Sheikh N A, Butt M M, et al. Journal of Bio- and Tribo-Corrosion, 2019, 5(3), 59.
67 Lei X L, Shen B, Cheng L, et al. International Journal of Refractory Me-tals and Hard Materials, 2014, 43, 30.
68 Dumpala R, Kumar N, Kumaran C R, et al. Diamond and Related Materials, 2014, 44, 71.
69 Najar K A, Butt M M. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 233(5), 1515.
70 Salgueiredo E, Amaral M, Almeida F A, et al. Surface Coating and Technology, 2013, 236, 380.
71 Ali M, Uergen M. Journal of Materials Research, 2012, 27(24), 3123.
72 Chen N C, Pu L W, Sun F H, et al. Surface Coating and Technology, 2015, 272, 66.
73 Linnik S A, Gaydaychuk A V. Materials Letters, 2015, 139, 389.
74 Dumpala R, Ramamoorthy B, Rao M S R. Applied Surface Science, 2014, 289, 545.
75 Yan G Y, Wu Y H, Cristea D, et al. Results in Physics, 2019, 13, 102303.
76 Wang C, Wang X, Sun F H. Surface Coating and Technology, 2018, 353, 49.
77 Lu F, Li H X, Zha L Q, et al. Materials Research Express, 2019, 6(8), 086441.
[1] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[2] 刘猛, 王庆, 朱晨, 顿鹏, 刘勇. 水洗和粉磨预处理前后煅烧磷石膏的性能变化及应用[J]. 材料导报, 2022, 36(Z1): 22020111-5.
[3] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[4] 陈刚, 邓人钦, 薛伟, 孙瑜蔓, 田茂森, 唐啸天. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 20120018-9.
[5] 李帅, 夏月庆, 王星星, 刘中英, 吴港, 董红刚, 贾连辉. 钛合金/钢异种材料熔化焊研究现状[J]. 材料导报, 2022, 36(14): 21010231-7.
[6] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[7] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[8] 王铁军, 张龙戈, 车洪艳, 董浩, 郑天明, 周双双, 王学远. Cu中间层对GH4099与Mo-Cu合金HIP扩散焊接头的影响[J]. 材料导报, 2021, 35(2): 2098-2102.
[9] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[10] 常垲硕, 郑光明, 李阳, 程祥, 刘焕宝, 赵光喜. 湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J]. 材料导报, 2021, 35(16): 16086-16092.
[11] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[12] 李洪, 许伟, 苏一凡, 林松盛, 代明江, 石倩. 面向石墨模具精密加工的金刚石涂层结构及性能[J]. 材料导报, 2021, 35(14): 14030-14034.
[13] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[14] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[15] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed