Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21100198-7    https://doi.org/10.11896/cldb.21100198
  无机非金属及其复合材料 |
基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟
张洪智1,2, 金祖权3,*, 姜能栋1, 葛智1, Erik Schlangen4, 凌一峰1, Branko Šavija4, 王铮5
1 山东大学齐鲁交通学院,济南 250100
2 山东大学苏州研究院,江苏 苏州 215021
3 青岛理工大学土木工程学院,山东 青岛 266033
4 代尔夫特理工大学土木工程与地球科学学院,荷兰 代尔夫特市 2628 CN
5 山东高速股份有限公司,济南 250100
Fracture Modelling of Concrete at Meso-scale Using Piece-wise Based Elastic-Plastic Lattice Model
ZHANG Hongzhi1,2, JIN Zuquan3,*, JIANG Nengdong1, GE Zhi1, Erik Schlangen4, LING Yifeng1, Branko Šavija4, WANG Zheng5
1 School of Qilu Transportation, Shandong University, Jinan 250100, China
2 Suzhou Research Institute, Shandong University, Suzhou 215021, Jiangsu, China
3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
4 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, the Netherlands
5 Shandong Hi-speed Company Limited, Jinan 250100, China
下载:  全 文 ( PDF ) ( 13380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 经典格构模型理论假设单元服从完全脆性的线弹性本构关系,忽略了砂浆基体的延性,导致预测的混凝土荷载-位移曲线延性不足。针对该问题,基于分段步进式方法描述砂浆单元弹塑性本构关系,通过序列线性理论模拟试件受荷损伤破坏过程及力学响应。基于混凝土单轴拉伸和压缩试验对模型进行了校验,发现该模拟方法可以精确模拟混凝土的开裂及荷载-位移曲线。同时,该模型可用于模拟混凝土受拉开裂的尺寸效应问题,以及受压破坏时受力端横向约束程度和试件长细比对开裂行为的影响,为研究混凝土的断裂行为提供了新的理论方法和途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洪智
金祖权
姜能栋
葛智
Erik Schlangen
凌一峰
Branko Šavija
王铮
关键词:  混凝土  细观尺度  格构模型  断裂过程  弹塑性本构关系    
Abstract: The classically lattice model assumes the local elements behave elastic brittle, neglecting the ductility of the mortar matrix. This leads to the simulated load-displacement response more brittle than the realistic. To solve the aforementioned issue, a piece-wise approach was introduced to describe the elastic-plastic constitutive relation of lattice element. The fracture process and the load-displacement response were obtained through the sequentially-linear solution approach. The model was calibrated using the uniaxial tension and compression tests. It is found that the model can precisely simulate the fracture process and load-displacement response. Moreover, the model was used to model the size effect in uniaxial tension and the influence of the specimen’s slenderness and boundary confinement on the fracture behavior under compression. It offers a new theoretical method and approach for studying the fracture of concrete.
Key words:  concrete    meso-scale    lattice model    fracture process    elastic-plastic constitutive relation
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TU528  
基金资助: 山东省泰山学者青年基准纯水泥专家计划(tsqn201909032);国家自然科学基金(52008234;51978387);江苏省自然科学基金(BK20200235)
通讯作者:  *金祖权,青岛理工大学教授、博士研究生导师,国家杰青,国家万人计划科技创新领军人才,山东省泰山学者特聘专家。英国伦敦大学学院(UCL)访问学者、兼职博士研究生导师。1999年获河南理工大学硅酸盐工艺学士学位;2003年获河南理工大学采矿专业硕士学位;2006年获东南大学材料学博士学位。主要从事海洋钢筋混凝土腐蚀与防护研究。在《硅酸盐学报》、Cement and Concrete Research等国内外著名刊物上发表SCI和EI检索论文近100篇。获得教育部自然科学一等奖、科技进步二等奖各1项。jinzuquan@126.com   
作者简介:  张洪智,山东大学教授,国家优青(海外),山东省泰山学者青年专家。2013年获哈尔滨工业大学土木工程专业学士学位;2015年获哈尔滨工业大学土木工程专业硕士学位;2019年获代尔夫特理工大学结构工程博士学位。主要从事水泥基材料的多尺度测试和模拟等方面的科学研究。在Cement and Concrete Research、Cement and Concrete Composites等著名SCI期刊发表论文60余篇。
引用本文:    
张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
ZHANG Hongzhi, JIN Zuquan, JIANG Nengdong, GE Zhi, Erik Schlangen, LING Yifeng, Branko Šavija, WANG Zheng. Fracture Modelling of Concrete at Meso-scale Using Piece-wise Based Elastic-Plastic Lattice Model. Materials Reports, 2023, 37(8): 21100198-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100198  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21100198
1 Snozzi L, Caballero A, Molinari J F. Cement and Concrete Research, 2011, 41(11), 1130.
2 Zhou X Q, Hao H. International Journal of Solids and Structures, 2008, 45(17), 4648.
3 Li G, Xu Z H, Niu J G. Materials Reports B:Reaearch Papers, 2018, 32(7), 2412(in Chinese).
李革, 徐泽华, 牛建刚. 材料导报:研究篇, 2018, 32(7), 2412.
4 Du X L, Jin L. Engineering Mechanics, 2013, 30(2), 82(in Chinese).
杜修力, 金浏. 工程力学, 2013, 30(2), 82.
5 Yang Z J, Huang Y J, Yao F, et al. Engineering Mechanics, 2020, 37(8), 158(in Chinese).
杨贞军, 黄宇劼, 尧锋,等. 工程力学, 2020, 37(8), 158.
6 Chen S, Wang Y, Ning C. Materials Reports B:Reaearch Papers, 2016, 30(6), 153.(in Chinese).
陈松, 王岩, 宁聪.材料导报:研究篇, 2016, 30(6), 153.
7 Mahmud G H, Yang Z J, Hassan A M T, et al. Construction and Buil-ding Materials, 2013, 48, 1027.
8 Sangha C M, Dhir R K. Matériaux et Construction 1972, 5, 361.
9 Huang L, Chen L X, Yan L B, et al. Construction and Building Mate-rials, 2017, 154, 123.
10 Kumar S, Mukhopadhyay T, Waseem S A, et al. Strength of Materials 2016, 48, 592.
11 Jiang N D, Zhang H Z, Chang Z, et al. Construction and Building Materials, 2020, 263, 120153.
12 Schlangen E. Engineering Fracture Mechanics,1997, 57(2), 319.
13 Kwan A K H, Wang Z M, Chan H C. Computers and Structures, 1999, 70(5), 545.
14 Ragab A, Hansen W. Materials Journal, 1999, 96(3), 354.
15 Mohamed A R, Hansen W. Cement and Concrete Composites, 1999, 21(5-6), 349.
16 Cundall P A, Strack O D L. Géotechnique, 1979, 29(1), 47.
17 Wang Z M, Kwan A K H, Chan H C. Computers and Structures, 1999, 70(5), 533.
18 Liu G T, Wang Z M. Journal of Tsinghua University (Natural Science Edition), 1996(1), 84(in Chinese).
刘光廷,王宗敏.清华大学学报(自然科学版), 1996(1), 84.
19 Zhu W C, Tang C A, Wang S Y. Structural Engineering and Mechanics, 2005, 19(5), 519.
20 Zhu W C, Tang C A, Teng J G, et al. Journal of China Three Gorges University(Natural Sciences), 2004, 26(1), 22(in Chinese).
朱万成, 唐春安, 滕锦光,等.三峡大学学报(自然科学版), 2004, 26(1), 22.
21 Hou D S, Zhang W, Ge Z, et al. Construction and Building Materials, 2021, 267, 120939.
22 Liu Z G, Chen J Y. Engineering Mechanics, 2012, 29(7), 136(in Chinese).
刘智光, 陈健云. 工程力学, 2012, 29(7), 136.
23 Ma H F, Chen H Q, Yang C L. China Civil Engineering Journal, 2012, 45(7), 175(in Chinese).
马怀发, 陈厚群, 阳昌陆. 土木工程学报, 2012, 45(7), 175.
24 Jin L, Li X L, Fan L L, et al. Journal of Composites for Construction, 2020, 24(5), 04020038.
25 Wu Z Y, Zhang J H, Yu H F, et al. Composites Part B, 2020, 200(108299).
26 Zhao X K, Dong Q, Chen X Q, et al. Construction and Building Mate-rials, 2021, 272, 121669.
27 Hu Q Y, Chang X L, Feng C Q, et al. Journal of Zhejiang University (Engineering Science), 2018, 52(8), 1596(in Chinese).
胡倩筠, 常晓林, 冯楚桥,等.浙江大学学报(工学版), 2018, 52(8),1596.
28 Li D, Jin L, Du X L, et al. China Civil Engineering Journal 2020, 53(2), 48(in Chinese).
李冬, 金浏, 杜修力,等.土木工程学报, 2020, 53(2), 48.
29 Hrennikoff A. Journal of Applied Mechanics, 1941, 8(4), A169.
30 Schlangen E, Van Mier J G M. Materials and Structures, 1992, 25(9), 534.
31 Guo L P, Carpinteri A, Roncella R,et al. Computational Materials Science, 2009, 44(4), 1098.
32 Caduff D, Van Mier J G M. Cement and Concrete Composites, 2010,32(4), 281.
33 Xiao J Z, Du J T, Liu Q. Journal of Building Materials, 2009, 12(5), 511.
肖建庄, 杜江涛, 刘琼. 建筑材料学报, 2009, 12(5), 511.
34 Zhang H Z, Xu Y, Gan Y D, et al. Cement and Concrete Composites, 2020, 110, 103567.
35 Van Mier J G M. Concrete fracture: a multiscale approach, CRC Press, US, 2012.
36 Chang Z, Zhang H Z, Schlangen E, et al. Applied Sciences, 2020, 10, 14.
37 Karavelić E, Nikolić M, Lbrahimbegovic A, et al. Computer Methods in Applied Mechanics and Engineering 2017, 344, 1051.
38 Yip M, Mohle J, Bolander J E. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(6), 393.
39 Zhang H Z, Šavija B, Xu Y D, et al. Cement and Concrete Composites, 2018, 94, 264.
40 Lilliu G, Van Mier J G M. Engineering Fracture Mechanics, 2003, 70(7), 927.
41 Lilliu G. 3D analysis of fracture processes in concrete. Eburon Uitgeverij BV, The Netherlands, 2007.
42 Van Vliet M R, Van Mier J G M. Engineering Fracture Mechanics, 2000, 65(2), 165.
43 Shan Z, Fang L M, Gao J. Concrete, 2015(7), 11(in Chinese).
单智,方联民,高晶.混凝土, 2015(7), 11.
44 Van Mier J G M, Van Vliet M R. Engineering Fracture Mechanics, 2003, 70(16), 2281.
45 Van Mier J G M, Shah S P, Arnaud M, et al. Materials and Structures, 1997, 30(4), 195.
[1] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[2] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[3] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[4] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[5] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[6] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[7] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[8] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[9] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[10] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[11] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[12] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[13] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[14] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[15] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed