Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21080026-5    https://doi.org/10.11896/cldb.21080026
  无机非金属及其复合材料 |
碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究
张铖, 王玲*, 姚燕, 史鑫宇
中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
On the Relationship Between Pore Structure and Gas Permeability from Autoclam Test in Carbonated Concrete
ZHANG Cheng, WANG Ling*, YAO Yan, SHI Xinyu
State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 5305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将C30混凝土试件在20%(体积分数)CO2中加速碳化至不同龄期,采用Autoclam测试系统和压汞法(MIP)测试碳化混凝土的空气渗透系数(kAu)及孔隙结构参数,通过灰色关联分析(GRA)研究了二者的关系。结果表明:随碳化时间延长,混凝土的kAu呈指数式增长,混凝土孔隙率、特征孔径和孔隙连通度也增大,孔径小于200 nm孔的体积占比逐渐减小,200~1 000 nm孔的体积占比逐渐增大,小于1 000 nm孔的体积占比基本不变。GRA结果显示,与碳化混凝土kAu关联度最高的三个孔隙结构参数是:50~200 nm孔的体积占比(γi=0.932)、孔隙连通度(γi=0.907)和孔隙率(γi=0.888),回归建立了kAu与这三个参数之间的线性关系模型,为后期利用kAu建立混凝土寿命预测模型奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铖
王玲
姚燕
史鑫宇
关键词:  混凝土  加速碳化  孔隙结构  空气渗透系数  灰色关联分析    
Abstract: The C30 concrete specimens were exposed in a 20vol% CO2 atmosphere at different ages for the accelerated carbonation test. The carbonated concrete's gas permeability coefficient (kAu) and pore structure parameters were measured by the Autoclam test system and the mercury intrusion porosimetry (MIP). The relationship between kAu and pore structure parameters was studied by grey correlation analysis (GRA). The test results showed that the air permeability coefficient of the carbonated concrete increased exponentially with the increase of exposure time. The porosity, characteristic pore size and pore connectivity of the carbonated concrete increased with the exposure time as well. For the change of pore distribution with the exposure time, the volume ratio of pores smaller than 200 nm decreased, the volume ratio of pores with the diameter of 200—1 000 nm increased, and the volume ratio of pores larger than 1 000 nm was unchanged. The GRA results showed that the pore structure parameters with the highest correlation with the kAu are the volume ratio of 50—200 nm pores, pore connectivity, and porosity. The grey correlation coefficients of the above three parameters are 0.932, 0.907 and 0.888, respectively. The linear relation model between kAu and the three parameters was established by regression, laying the foundation for future work on establishing a service life prediction model based on gas permeability coefficient.
Key words:  concrete    accelerated carbonation    pore structure    air permeability coefficient    grey correlational analysis
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51961135202)
通讯作者:  *王玲,中国建筑材料科学研究总院教授级高工、博士研究生导师,中国建材联合会混凝土外加剂分会秘书长,全国混凝土标准化技术委员会副秘书长,RILEM TC-246 TDC和RILEM TC-281 CCC成员。1990年、1993年分别于同济大学和武汉工业大学获得工学学士学位和工学硕士学位。完成20项国家科技计划课题和国际科技合作项目,研究重点是极端环境下长寿命混凝土制备及应用技术、高速铁路无砟轨道混凝土新材料、荷载与典型服役环境耦合作用下混凝土耐久性评价与寿命预测、混凝土收缩开裂控制技术、液体无碱速凝剂和喷射混凝土技术。发表论文70篇,获发明专利40项,编写国标15项和RILEM标准1项,获国家和省部级科技奖励10项。wangling@cbmamail.com.cn   
作者简介:  张铖,RILEM技术委员会TC-281 CCC成员,2015年7月、2019年7月分别于西安工业大学和大连大学获得工学学士学位和硕士学位。2022年8月在王玲教授的指导下于中国建筑材料科学研究总院获材料学博士学位。目前从事混凝土耐久性研究,重点研究含辅助性胶凝材料的混凝土碳化、应力-碳化作用下的混凝土劣化损伤以及应力作用下碳化混凝土寿命预测。
引用本文:    
张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
ZHANG Cheng, WANG Ling, YAO Yan, SHI Xinyu. On the Relationship Between Pore Structure and Gas Permeability from Autoclam Test in Carbonated Concrete. Materials Reports, 2023, 37(8): 21080026-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080026  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21080026
1 Marcos-Meson V, Michel A, Solgaard A, et al. Cement and Concrete Research, 2018, 103, 1.
2 Zhou S B, Liang J L, Xuan W A, et al. Advances in Materials Science and Engineering, 2017, 2017, 1.
3 Liu H, Liu C, Bai G L, et al. Construction and Building Materials, 2020, 263, 120123.
4 Liu H, Liu C, Bai G L, et al. Construction and Building Materials, 2020, 259(11), 120397.
5 Zou C, Long G C, Xie Y J, et al. Microporous and Mesoporous Materials, 2019, 288, 109566.
6 Dhir R K, Hewlett P C, Chan Y N. Magazine of Concrete Research, 2015, 41(148), 137.
7 Torrent R, Denarie E, Jacobs F, et al. Materials and Corrosion, 2012, 63(12), 1127.
8 Basheer L, Kropp J, Cleland K. Construction and Building Materials, 2001, 15, 93.
9 Gui Q. Study on gas permeability of cement-based materials. Ph.D. Thesis,Tsinghua University, China, 2016 (in Chinese).
桂强. 水泥基材料空气渗透性研究. 博士学位论文,清华大学, 2016.
10 Gui Q, Qin M F, Li K F. Journal of the Chinese Ceramic Society, 2015, 43(10), 1500 (in Chinese).
桂强, 秦敏峰, 李克非.硅酸盐学报, 2015, 43(10), 1500.
11 Luo M Y, Gui Q, Li K F. Journal of the Chinese Ceramic Society, 2014, 42(8), 974 (in Chinese).
罗明勇, 桂强, 李克非.硅酸盐学报, 2014, 42(8), 974.
12 Luo M Y. Pore structure characterization and gas permeability of cement-based materials containing high volume of GGBS. Master’s Thesis,Tsinghua University, 2013 (in Chinese).
罗明勇. 大掺量矿渣水泥基材料孔隙结构与透气性研究. 硕士学位论文,清华大学, 2013.
13 Care S, Derkx F. Construction and Building Materials, 2011, 25, 1248.
14 Hamami A A, Turcry P, Ait-Mokhtar A. Cement and Concrete Research, 2012, 42, 490.
15 Lafhaj Z, Goueygou M, Djerbi A, et al. Cement and Concrete Research, 2006, 36, 625.
16 Sinsiri T, Chindaprasirt P, Jaturapitakkul C. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 683.
17 Basheer P A M, Montgomery F R, Long A E. Nondestructive Testing and Evaluation, 1995, 12(1), 53.
18 Yang K, Basheer P A M, Bai Y, et al. NDT & E International, 2014, 64, 30.
19 Barbhuiya S A, Gbagbo J K, Russell M I, et al. Construction and Buil-ding Materials, 2009, 23(10), 3233.
20 Tang G B, Yao Y, Wang L, et al. Journal of Building Materials, 2020, 23(2), 304 (in Chinese).
唐官保, 姚燕, 王玲, 等.建筑材料学报, 2020, 23(2), 304.
21 Tang G B, Yan Y, Ling W, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2018, 33(6), 1481.
22 Cizer Z. rodriguez-Navarro C, Ruiz-Agudo E, et al. Journal of Materials Science, 2012, 47(16), 6151.
23 Auroy M, Poyet S, Le Bescop P, et al. Cement and Concrete Research, 2015, 74, 44.
24 Greve-Dierfeld S V, Lothenbach B, Vollpracht A, et al. Materials and Structures, 2020, 53, 136.
25 Shen A Q, Lin S L, Guo Y C, et al. Construction and Building Mate-rials, 2018, 174, 684.
26 Zhang C, Li W H, Fan J P, et al. Journal of Building Materials, 2020, 23(3), 546 (in Chinese).
张铖, 李维红, 范金朋, 等.建筑材料学报, 2020, 23(3), 546.
27 Deng J L. Systems & Control Letters, 1982, 1(5), 288.
28 Zeng Q, Luo M Y, Pang X Y, et al. Applied Surface Science, 2013, 282, 302.
29 Li K F, Zeng Q, Luo M Y, et al. Construction and Building Materials, 2014, 51, 329.
30 Gui Q, Qin M F, Li K F. Cement and Concrete Research, 2016, 89, 109.
31 Salvoldi B G, Beushausen H, Alexander M G. Construction and Building Materials, 2015, 85, 30.
[1] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[2] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[3] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[4] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[5] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[6] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[7] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[8] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[9] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[10] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[11] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[12] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[13] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[14] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[15] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed