Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21060148-7    https://doi.org/10.11896/cldb.21060148
  无机非金属及其复合材料 |
重力污水管道混凝土的加速腐蚀模拟研究
孔丽娟1,2,3,*, 梁增蕴2, 鹿桓2, 赵文静2
1 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
2 石家庄铁道大学材料科学与工程学院,石家庄 050043
3 石家庄铁道大学河北省交通工程与环境协同发展新材料重点实验室,石家庄 050043
Accelerated Simulating of the Deterioration of Concrete in Gravity Sewers
KONG Lijuan1,2,3,*, LIANG Zengyun2, LU Huan2, ZHAO Wengjing2
1 State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 33769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为加速模拟重力污水管道混凝土腐蚀,硫化氢气体浓度和污水化学需氧量均提高20倍,将混凝土试件半浸其中进行研究。结果表明,高浓度污水加速了微生物的代谢产酸,导致混凝土严重劣化。水位区附近的混凝土表面生物膜生长远多于其他区域。远离水面生物膜变薄且颜色发黄,表明发生了硫化氢气体的生物与化学氧化反应。然而,气相区混凝土的劣化程度不如现场观察到的严重,可见高浓度硫化氢并非是控制混凝土腐蚀的首要因素,硫氧化细菌的数量和活性水平也至关重要,应同样强化。浸没在污水中的混凝土试件腐蚀层最厚,内部硫含量也最高。因此,硫元素分布可作为反映污水管道混凝土腐蚀发展的有效指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔丽娟
梁增蕴
鹿桓
赵文静
关键词:  重力污水管  混凝土腐蚀  加速模拟  硫化氢浓度  强化污水    
Abstract: In order to mimic the concrete deterioration in gravity sewers, accelerated laboratory corrosion test was designed by intensifying both the concentrations of H2S gas and the chemical oxygen demand (COD) of sewage by 20 times, and the corrosion development of half-immersed concrete was investigated. The results indicated that the highly-intensified sewage accelerated the acid production by microorganisms and led to the most serious deterioration of concrete, in particular for the concrete at the sewage level, where a thicker biofilm was developed. For the biofilm above the sewage, its thickness became thinner and the color was yellow, indicating the presence of the biochemical oxidization reaction of H2S. However, the deterioration of concrete in the gas phase was not as serious as observed in the field sewers. This demonstrated that the high H2S concentration may be not the most determining factor governing the concrete corrosion, while the population and activity level of sulfide-oxidizing bacteria (SOB) were of likely great importance and should also be intensified. Moreover, the specimen immersed in sewage had the thickest corrosion layer and highest sulfur content. Thus, the distribution of element S could be an effective indicator to reflect the development of concrete corrosion in sewers.
Key words:  gravity sewers    concrete deterioration    accelerated simulating    H2S concentration    intensified sewage
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(51878421);河北省自然科学基金(E2019210284)
通讯作者:  * 孔丽娟,石家庄铁道大学材料科学与工程学院教授、博士研究生导师。2003年于哈尔滨工业大学无机非金属材料专业本科毕业,2008年于哈尔滨工业大学材料学专业博士毕业后到石家庄铁道大学工作至今。目前主要从事严酷环境下混凝土耐久性能及提升、固体废弃物资源化利用方面的研究工作。发表论文50余篇,包括Construction and Building Materials、Journal of Materials in Civil Engineering、ACI Materials Journal等。klj@stdu.edu.cn   
引用本文:    
孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
KONG Lijuan, LIANG Zengyun, LU Huan, ZHAO Wengjing. Accelerated Simulating of the Deterioration of Concrete in Gravity Sewers. Materials Reports, 2023, 37(7): 21060148-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060148  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21060148
1 Jiang G, Wightman E, Donose B C, et al. Water Research, 2014, 49, 166.
2 Zhang X W, Zhang X. Journal of Building Materials, 2006, 9(1), 52 (in Chinese).
张小伟, 张雄. 建筑材料学报, 2006, 9(1), 52.
3 Wu M, Wang T, Wu K, et al. Construction and Building Materials, 2019, 239, 185.
4 Vollertsen J, Nielsen A H, Jensen H S, et al. Construction and Building Materials, 2008, 394(1), 162.
5 Wang T, Wu K, Kan L, et al. Construction and Building Materials, 2020, 247, 118539.
6 Parker C D. Sewage and Industrial Waste, 1951, 23(10), 1477.
7 Fu L, Zhou Z, Wang X H, et al. Environmental Science and Management, 2009, 34(2), 96(in Chinese).
傅利, 周振, 王新华, 等. 环境科学与管理, 2009, 34(2), 96.
8 Belie N D, Monteny J, Beeldens A, et al. Cement and Concrete Research, 2004, 34(12), 2223.
9 Jiang G, Keller J, Bond P L. Water Research, 2014, 65(1), 157.
10 O’Dea V. Materials Performance, 2007, 46(1), 36.
11 Nielsen A H, Jacobsen V H. Water Environment Research, 2006, 78(3), 275
12 Joseph A P, Keller J, Bustamante H, et al. Water Research, 2012, 46(13), 4235
13 Yongsiri C, Vollertsen J, Hvitved-Jacobsen T. Journal of Environmental Engineering, 2004, 130(1), 104.
14 Robert L, Devinny J S, Mansfeld F, et al. Journal of Environmental Engineering, 1991, 117(6), 751.
15 Davis L, Nica D. Biodeterioration and Biodegradation, 1998, 42(2), 75.
16 Hernandez M T, Marchand E A, Roberts D J, et al. Biodeterioration and Biodegradation, 2002, 49(4), 271.
17 Yousefi A, Allahverdi A, Hejazi P. Biodeterioration and Biodegradation, 2014, 86, 317.
18 Bielefeldt A, Gutierrez-Padilla M G D, Ovtchinnikov S, et al. Journal of Environmental Engineering, 2009, 136(7), 731.
19 Wen B L. The study on corrosion and durability of concrete in municipal sewerage. Master's Thesis, Tianjin University, China, 2005(in Chinese)
闻宝联. 城市污水环境下混凝土腐蚀及耐久性研究. 硕士学位论文, 天津大学, 2005.
20 Zhang X W, Han J Y, Tian Y J, et al. Corrosion Science and Protection Technology, 2003, 15(4), 234(in Chinese).
张小伟, 韩静云, 田永静, 等. 腐蚀科学与防护技术, 2003, 15(4), 237.
21 Kong L J, Han M D, Wu Z G. Journal of the Chinese Ceramic Society, 2018, 46(8), 1117(in Chinese).
孔丽娟, 韩梦迪, 吴志刚. 硅酸盐学报, 2018, 46(8), 1117.
22 Wiener M S, Salas B V, Quintero-Núñez M, et al. Corrosion Engineering, Science and Technology, 2006, 41(3), 221.
23 ChoK S, Mori T. Water Science and Technology, 1995, 31(7), 263.
24 Mori T, Nonaka T, Tazaki K, et al. Water Research, 1992, 26(1), 29.
25 Satoh H, Odagiri M, Ito T, et al. Water Research, 2009, 43(18), 4729.
26 Roberts D J, Nica D, Zuo G, et al. International Biodeterioration and Biodegradation, 2002, 49(4), 227.
27 Li X, Lin X, Ji T. Construction and Building Materials, 2017, 157, 331.
28 Sun X, Jiang G, Bond P L, et al. Water Research, 2014, 59(1), 229.
[1] 袁晓露, 李北星, 祝文凯, 张亚明, 王凯. 酸雨对混凝土表层结构的侵蚀机理[J]. 材料导报, 2022, 36(22): 20120006-6.
[2] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[3] 李京军, 刘威亨, 牛建刚, 李明闯. 不同空心率的方形聚丙烯纤维轻骨料混凝土空心柱的轴压性能[J]. 材料导报, 2021, 35(22): 22057-22062.
[4] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[5] 刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
[6] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[7] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[8] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[9] 刘晓英, 肖玉, 彭家惠. 微纳技术在泡沫混凝土中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 80-85.
[10] 叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(Z1): 274-278.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed