Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 20120006-6    https://doi.org/10.11896/cldb.20120006
  无机非金属及其复合材料 |
酸雨对混凝土表层结构的侵蚀机理
袁晓露1,*, 李北星2, 祝文凯2, 张亚明2, 王凯2
1 三峡库区地质灾害教育部重点实验室(三峡大学),湖北 宜昌 443002
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
Corrosion Mechanism of Acid Rain on Surface Structure of Concrete
YUAN Xiaolu1,*, LI Beixing2, ZHU Wenkai2, ZHANG Yaming2, WANG Kai2
1 Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang 443002, Hubei, China
2 China State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 1798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土表层结构是影响酸雨环境下材料耐久性能和钢筋保护层作用的重要环节,然而,目前关于酸雨对混凝土表层结构的侵蚀机理方面的研究还较为缺乏。通过测试模拟酸雨侵蚀条件下混凝土的累积酸消耗、中性化深度、质量、强度等性能的变化规律,结合XRD、SEM等微观测试手段和理论分析,研究了混凝土表层结构受酸雨作用的腐蚀机理。结果表明,混凝土表层结构的孔隙率较大且硬化水泥浆体含量较高,使得酸雨在其中的侵蚀速度较快,导致水泥石中的Ca(OH)2一部分发生溶解,一部分反应生成CaSO4·2H2O;水化硅酸钙、水化铝酸钙和钙矾石分解成CaSO4·2H2O、Al2O3·nH2O和CaSO4·2H2O,其中Al2O3·nH2O进一步与H+反应而溶解。砂率的增加和聚丙烯纤维的掺入改善了混凝土表层结构,显著提高了混凝土的耐酸雨侵蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁晓露
李北星
祝文凯
张亚明
王凯
关键词:  酸雨  混凝土  表层结构  机理  侵蚀    
Abstract: The surface structure of concrete is important to influence the durability of concrete and the protective layer of reinforcing bars under acid rain. However, there is a lack of research on the corrosion mechanism of acid rain on the surface structure of concrete. The concrete properties including the accumulative acid consumption, the neutral depth, the mass and the strength were measured. The experimental results about these concrete properties were applied with X-ray diffraction, scanning electron microscope and the theoretical analysis, to study the corrosion mechanism of concrete surface structure subjected to acid rain. Results indicate that the concrete surface structure has high porosity and much hardened cement paste, which makes acid rain corrode faster. Some Ca(OH)2 in the hardened cement paste are dissolved, and the others react to form CaSO4·2H2O. Calcium silicate hydrate, calcium aluminate hydrate and ettringite decompose into CaSO4·2H2O,Al2O3·nH2O and CaSO4·2H2O, among which Al2O3·nH2O dissolves by reacting with H+. Increase of sand content ratio and the addition of polypropylene fibers significantly promote the resistance of concrete to the corrosion of acid rain, by improving the surface structure of concrete.
Key words:  acid rain    concrete    surface structure    mechanism    corrosion
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(51372185);湖北省教育厅科学研究计划(D20191201);宜昌市应用基础研究项目(A19-302-09)
通讯作者:  * 544529920@qq.com   
作者简介:  袁晓露,三峡大学土木与建筑学院副教授、硕士研究生导师。2002年中国石油大学建筑工程专业本科毕业,2005年重庆大学建筑材料专业硕士毕业,2010年武汉理工大学材料学专业博士毕业。目前主要从事水泥混凝土材料等方面的研究工作。发表学术论文20余篇,其中SCI及EI收录10篇。
引用本文:    
袁晓露, 李北星, 祝文凯, 张亚明, 王凯. 酸雨对混凝土表层结构的侵蚀机理[J]. 材料导报, 2022, 36(22): 20120006-6.
YUAN Xiaolu, LI Beixing, ZHU Wenkai, ZHANG Yaming, WANG Kai. Corrosion Mechanism of Acid Rain on Surface Structure of Concrete. Materials Reports, 2022, 36(22): 20120006-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120006  或          http://www.mater-rep.com/CN/Y2022/V36/I22/20120006
1 Zhang X M,Chai F H,Wang S L,et al.Research of Environmental Sciences,2010,23(5),527(in Chinese).
张新民,柴发合,王淑兰,等.环境科学研究,2010,23(5),527.
2 Hiroshi O,Hideki K,Shinichi H,et al. Atmospheric Environment,2000,34(18),2937.
3 Hu X B. Journal of the Chinese Ceramic Society,2008,63(S1),147(in Chinese).
胡晓波. 硅酸盐学报,2008,63(S1),147.
4 Wang Z H,Zhu Z M,Sun X,et al. Engineering Failure Analysis,2017,77,76.
5 Lu C F,Wang W,Zhou Q S,et al. Journal of Cleaner Production,2020,262,1.
6 Zhou C L,Zhu Z M,Zhu A J,et al. Construction and Building Materials,2019,228,116.
7 Deep T,Rakesh K,Mehta P K,et al. Materials Today: Proceedings,2020,27,1001.
8 Sanjukta S,Trupti R M,Neha P,et al. Materials Today: Proceedings,2020,26,796.
9 Xie S D,Qi L,Zhou D. Atmospheric Environment,2004,38,4457.
10 Chen M C,Wang K,Xie L. Engineering Failure Analysis,2013,27,272.
11 Shi L,Ma H,Ke K. Journal of Nanjing University of Science and Techno-logy,2012,36(4),717(in Chinese).
石立安,麻海燕,柯凯.南京理工大学学报,2012,36(4),717.
12 Sun Z T,Wan X M,Han X,et al.Concrete,2021(8),47(in Chinese).
孙忠涛,万小梅,韩笑,等.混凝土,2021(8),47.
13 Fang K H, He Z. Building material,China Water Power Press, China,2016(in Chinese).
方坤河,何真.建筑材料,中国水利水电出版社,2016.
14 Yang J J,Guan Z F,Yu H Y,et al.Journal of the Chinese Ceramic Society,1997,25(4),470(in Chinese).
杨久俊,管宗甫,余海燕,等.硅酸盐学报,1997,25(4),470.
15 Weng K M,Min P R,Wang G B.Journal of the Chinese Ceramic Society,1989,17(2),173(in Chinese).
翁开茂,闵盘荣,王国宾.硅酸盐学报,1989,17(2),173.
16 Gospodinov P, Kazandjiev R, Mironova M.Cement and Concrete Compo-sites,1996,18,401.
17 Laurent D W,Rabia B. Waste Management,2007,27,1638.
[1] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[2] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[3] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[4] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[9] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[10] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[11] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[12] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[13] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[14] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[15] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed