Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22057-22062    https://doi.org/10.11896/cldb.20080291
  无机非金属及其复合材料 |
不同空心率的方形聚丙烯纤维轻骨料混凝土空心柱的轴压性能
李京军, 刘威亨, 牛建刚, 李明闯
内蒙古科技大学土木工程学院,包头 014010
Axial Compression Properties of Square Polypropylene Fiber Lightweight Aggregate Concrete Hollow Columns with Different Hollow Rates
LI Jingjun, LIU Weiheng, NIU Jiangang, LI Mingchuang
School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
下载:  全 文 ( PDF ) ( 13033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究不同空心率对方形聚丙烯纤维轻骨料混凝土空心柱轴压性能的影响,进行了七组(14根)轴压柱试验,并借助有限元数值模拟软件ABAQUS对四根配筋柱进行数值模拟。结果表明:随着空心率增大,试件混凝土表面的裂缝数量增多,峰值荷载降低;未配筋的空心柱大多出现两条上下贯通的竖向主裂缝且集中在方孔附近,混凝土破坏较严重,弹性刚度显著降低;而配筋的空心柱大多为一条斜向主裂缝,裂缝宽度较小,混凝土整体性较好;空心柱的延性先增大后减小,空心率为9%时空心柱的延性系数最高,且空心柱延性均比实心柱好。有限元模拟结果表明,在弹塑性阶段混凝土开始破坏、纵筋屈服,在下降段混凝土破坏严重。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李京军
刘威亨
牛建刚
李明闯
关键词:  空心率  方孔  轻骨料  轴压性能    
Abstract: In order to study the effect of different hollow ratios on the axial compression performance of high performance polypropylene fiber reinforced lightweight aggregate concrete square hollow columns, 7 groups (14) of axial compression column tests were carried out and four reinforced concrete columns were performed numerical simulations by using finite element numerical simulation software ABAQUS. The results showed that as the hollow rate increased, the number of cracks on the concrete surface of the specimen increased, and the peak load decreased; most of the unreinforced hollow columns were two vertical main cracks penetrating from top to bottom concentrated near the square holes. The concrete da-mage was serious and the elastic stiffness was significantly reduced; however, most of the reinforced hollow columns had a diagonal main crack with small crack width, and the concrete had good integrity; the ductility of hollow columns increased first and then decreased and when the hollow rate was 9%, the ductility coefficient of the hollow column obtained the maximum value. Generally speaking, the ductility of hollow columns was better than that of solid columns. The finite element simulation results showed that the concrete began to fail and the longitudinal bars yielded in the elastoplastic stage, and the concrete was seriously damaged in the descending section.
Key words:  hollow rate    square hole    lightweight aggregate    axial compression performance
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU528.2  
  TU375.3  
基金资助: 国家自然科学基金项目(51968058);内蒙古自治区自然科学基金项目(2020BS05020;2021MS05058);内蒙古自治区高等学校科学技术研究项目(NJZY20097);内蒙古科技大学创新基金项目(2019QDL-B50);内蒙古科技大学攀登计划项目(XZ-TJ-01);内蒙古科技大学建筑科学研究所开放基金项目(JYSJJ-2021Q04)
通讯作者:  niujiangang@imust.edu.cn   
作者简介:  李京军,内蒙古科技大学土木工程学院讲师。2018年毕业于重庆大学,获得工学博士学位。主要从事高性能水泥基材料的科学研究和技术开发工作。
牛建刚,内蒙古科技大学土木工程学院,教授。2008年毕业于西安建筑科技大学,获得工学博士学位。主要从事混凝土耐久性研究。
引用本文:    
李京军, 刘威亨, 牛建刚, 李明闯. 不同空心率的方形聚丙烯纤维轻骨料混凝土空心柱的轴压性能[J]. 材料导报, 2021, 35(22): 22057-22062.
LI Jingjun, LIU Weiheng, NIU Jiangang, LI Mingchuang. Axial Compression Properties of Square Polypropylene Fiber Lightweight Aggregate Concrete Hollow Columns with Different Hollow Rates. Materials Reports, 2021, 35(22): 22057-22062.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080291  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22057
1 Kim T H, Choi J H, Lee J H, et al. Magazine of Concrete Research,2013, 65(21), 1277.
2 Shin M, Choi Y Y, Sun C, et al. Engineering Structures, 2013, 56, 958.
3 Zhang Y, Harries K A, Yuan W. Engineering Structures,2013,48,255.
4 Cassese P, Ricci P, Verderame G M. Engineering Structures, 2017, 144, 88.
5 Liang X, Sritharan S. Journal of Structural Engineering,2018,144(9),1.
6 Liang X, Sritharan S. Engineering Structures,2019, 191, 526.
7 AlAjarmeh O S, Manalo A C, Benmokrane B, et al. Construction & Building Materials, 2019, 194, 12.
8 AlAjarmeh O S, Manalo A C, Benmokrane B, et al. Engineering Structures, 2020, 203, 109829.
9 Kusumawardaningsih Y, Hadi M N S. Composite Structures, 2010, 93(1), 198.
10 Micelli F, Modarelli R. Composites Part B: Engineering, 2013, 45(1), 1420.
11 Jameel M T, Sheikh M N, Hadi M N S. Composite Structures,2017, 171, 538.
12 Hadi M N S, Le T D. Construction & Building Materials, 2014, 50, 62.
13 Hadi M N S, Jameel M T, Sheikh M N. Journal of Composite Construction, 2017, 1, 1.
14 Lignola G P, Prota A, Manfredi G, et al. Journal of Composites for Construction, 2007, 11(1), 42.
15 Lignola G P, Nardone F, Prota A, et al. Journal of Composites for Construction, 2011, 15(4), 545.
16 Lignola G P, Prota A, Manfredi G, et al. Construction & Building Materials, 2012, 35, 947.
17 Li J J, Niu J G, Wan C J, et al. Construction & Building Materials, 2016, 118, 27.
18 Niu J G, Liu J S, Wang J L. Materials Reports B: Research Papers, 2018, 32(7), 2407(in Chinese).
牛建刚, 刘江森, 王佳雷.材料导报:研究篇, 2018, 32(7), 2407.
19 Wang L M, Wu Y F. Engineering Structures, 2008, 30, 493.
20 Liu H Z. Experimental study on stress-strain relationship of plastic steel fiber reinforced lightweight aggregate concrete. Master's Thesis, Inner Mongolia University of Science and Technology,China, 2017(in Chinese).
刘洪振. 塑钢纤维增强轻骨料混凝土受压应力-应变关系试验研究. 硕士学位论文, 内蒙古科技大学, 2017.
[1] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[2] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[3] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[4] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[5] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[6] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[7] 单波, 赖大德, 刘福财. 大尺寸RPC管-HSC组合柱轴压性能试验研究*[J]. CLDB, 2017, 31(23): 96-102.
[8] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
[9] 赵占奎, 李翔龙, 刘一凡, 朱昆仑. 电火花-超声复合技术制备镍微米空心球的研究*[J]. 《材料导报》期刊社, 2017, 31(14): 72-76.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed