Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 124-128    https://doi.org/10.11896/j.issn.1005-023X.2017.020.026
  材料研究 |
自密实钢纤维轻骨料混凝土的早期性能与损伤分析*
张虎1,2
1 中交路桥南方工程有限公司,北京 101121;
2 重庆交通大学岩土工程研究所,重庆 400074
Early Capability and Damage Analysis of Self-Compacting, Steel-fiber-reinforced Lightweight Aggregate Concrete
ZHANG Hu1,2
1 China Communication South Road & Bridge Co.,LTD, Beijing 101121;
2 Institute of Geotechnical Engineering, Chongqing Jiaotong University, Chongqing 400074
下载:  全 文 ( PDF ) ( 2156KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在自密实轻骨料混凝土基础之上掺入钢纤维配制出自密实钢纤维轻骨料混凝土,分析了自密实钢纤维轻骨料混凝土的抗压强度、抗拉强度等主要力学性能以及收缩、抗碳化等耐久性能,并与普通骨料自密实混凝土进行对比分析。探讨了钢纤维对于改善自密实轻骨料混凝土损伤所起的作用及其机理。结果表明:掺入钢纤维后自密实轻骨料混凝土的抗压强度增大,劈拉强度明显提高,收缩及抗碳化能力也有明显改善。与普通骨料混凝土相比,自密实钢纤维轻骨料混凝土初始裂缝的产生与发展得到有效抑制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张虎
关键词:  自密实钢纤维轻骨料混凝土  力学性能  耐久性能  损伤    
Abstract: In this paper, we successfully prepared a self-compacting, steel-fiber-reinforced lightweight aggregate concrete on the basis of self-compacting lightweight aggregate concrete and steel fibers reinforcements. A comparative study was carried out on the mechanical properties and durabilities (compressive strength, tensile strength, shrinkage, carbonization resistance, etc.) between the self-compacting steel-fiber-reinforced lightweight aggregate concrete and self-compacting concrete with ordinary aggregate. The function and mechanism of steel fiber in improving the damage of self-compacting lightweight aggregate concrete were discussed. The results showed that the addition of steel fibers lead to an increase of compressive strength and a significant rise of splitting tensile strength for lightweight aggregate concrete, as well as obvious improvements for both shrinkage and carbonation resistance. Compared with ordinary aggregate concrete, the emergence and propagation of primary cracks of the self-compacting steel-fiber-reinforced lightweight aggregate concrete can be effectively inhibited.
Key words:  self-compacting steel-fiber-reinforced lightweight aggregate concrete    mechanical property    durability    damage
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51478073)
作者简介:  张虎:男,1979年生,主要从事道路及地下工程建设与管理工作 E-mail:huzhang@vip.163.com 翁其能:通讯作者,男,1976年生,博士,教授,主要从事地下工程建养及服役性能研究、混凝土材料损伤及耐久性研究 E-mail:qnweng@163.com
引用本文:    
张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
ZHANG Hu. Early Capability and Damage Analysis of Self-Compacting, Steel-fiber-reinforced Lightweight Aggregate Concrete. Materials Reports, 2017, 31(20): 124-128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.026  或          http://www.mater-rep.com/CN/Y2017/V31/I20/124
1 郑建岚, 罗素蓉, 王国杰,等. 自密实混凝土技术的研究与应用[M]. 北京:清华大学出版社, 2016.
2 Liu Xiaojie, Yu Zhiwu. Review of research and application of self compacting concrete [J]. J Railway Sci Eng, 2006,3(2):6(in Chinese).
刘小洁, 余志武. 自密实混凝土的研究与应用综述[J]. 铁道科学与工程学报, 2006,3(2):6.
3 王军. 损伤力学的理论与应用[M]. 北京:科学出版社, 1997.
4 Yu Jingwei, Wang Xiangdong, Zhu Xiaoting, et al. Dynamic stability, damage and fracture of concrete structures [J]. J University of Jinan (Nat Sci Ed), 2017,31 (3):244(in Chinese).
于静巍, 王向东, 朱小婷,等. 混凝土结构裂缝的动力稳定性损伤与断裂[J]. 济南大学学报(自然科学版), 2017,31(3):244.
5 Gao Danying, Cai Huaisen, Yuan Yuan, et al. Experimental study on compressive behavior of steel fiber reinforced self compacting concrete [J]. J Zhengzhou University (Eng Sci), 2006,27(2):1(in Chinese).
高丹盈, 蔡怀森, 袁媛,等. 钢纤维自密实混凝土抗压性能试验研究[J]. 郑州大学学报(工学版), 2006,27(2):1.
6 张磊, 孔德锋, 李磊. 损伤对混凝土层裂强度影响实验研究[C]//第十一届全国爆炸力学实验技术学术会议. 珠海,2016.
7 Hu Rui, Cai Canliu, Zhang Chunxiao. Study on shrinkage deformation of self compacting concrete and its improvement measures [J]. Concr Cem Prod, 2005(3):18(in Chinese).
胡瑞, 蔡灿柳, 张春晓. 自密实混凝土收缩变形及改善措施研究[J]. 混凝土与水泥制品, 2005(3):18.
8 Zhu Wen. Analysis and evaluation of influencing factors on early shrinkage cracking of SCC[J]. Concrete, 2008(10):45(in Chinese).
祝雯. 自密实混凝土早期收缩开裂影响因素分析与评价[J]. 混凝土, 2008(10):45.
9 Zhou Ling. Study on the shrinkage properties of self compacting concrete [J]. Subgrade Eng, 2017(1):143(in Chinese).
周凌.自密实混凝土的收缩性能研究[J]. 路基工程, 2017(1):143.
10Yan Chunling, Gao Danying, Hu Chunsheng, et al. Steel fiber recycled coarse aggregate concrete carbonation test [J]. J Civ Eng Manag, 2017,34(2):64(in Chinese).
闫春岭, 高丹盈, 胡春生,等. 钢纤维再生粗骨料混凝土碳化试验[J]. 土木工程与管理学报, 2017, 34(2):64.
11Zeng Zhixing. Experimental study on mechanical properties of steel fiber lightweight aggregate concrete and analysis of damage and fracture[D]. Tianjin: Tianjin University,2002(in Chinese).
曾志兴.钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D].天津:天津大学,2002.
12Xu Jingjing. Summary of research on shrinkage properties of self compacting steel fiber lightweight aggregate concrete [J]. Heilongjiang Sci Technol Inf, 2017(1):259(in Chinese).
徐静静. 自密实钢纤维轻骨料混凝土收缩性能的研究综述[J]. 黑龙江科技信息, 2017(1):259.
13Sun Hailin, Ye Lieping, Ding Jiantong, et al. The concrete shrin-kage and creep of high strength lightweight aggregate [J]. J Tsinghua University (Nat Sci Ed), 2007,47(6):765(in Chinese).
孙海林, 叶列平, 丁建彤,等. 高强轻骨料混凝土收缩和徐变试验[J]. 清华大学学报(自然科学版), 2007,47(6):765.
14Tan Yanbin, Yang Changhui. Study on dry shrinkage deformation properties of high strength lightweight aggregate concrete [J]. Mater Rev, 2008,22(专辑Ⅺ):391(in Chinese).
谭盐宾, 杨长辉. 高强轻集料混凝土干缩变形性能研究[J]. 材料导报, 2008,22(s2):391.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed