Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080206-7    https://doi.org/10.11896/cldb.22080206
  无机非金属及其复合材料 |
基于矿物溶解理论的砂岩化学损伤动态模型
梁艳玲1,2, 霍润科1,2,*, 宋战平1,2, 穆彦虎3, 秋添1,2, 宋子羿1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学陕西省岩土与地下空间工程重点实验室,西安 710055
3 中国科学院西北生态环境资源研究院,冻土工程国家重点实验室,兰州 730050
Dynamically Chemical Damage Model for Sandstone Based on Mineral Dissolution Theory
LIANG Yanling1,2, HUO Runke1,2,*, SONG Zhanping1,2, MU Yanhu3, QIU Tian1,2, SONG Ziyi1,2
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 8547KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 酸腐蚀环境下岩石物理力学性质的劣化本质上由岩石矿物的溶解引发的孔隙微裂隙的扩展贯通所致。为研究酸性环境下砂岩矿物的溶解特性,选择pH=1、3的盐酸溶液为腐蚀环境,借助X射线衍射试验鉴定砂岩矿物成分及含量,测试不同浸泡周期下溶液的pH值、阳离子浓度、岩样的质量及其纵波波速,并通过矿物溶解理论与化学动力学原理,建立反映整个腐蚀过程的砂岩化学损伤动态模型。研究结果表明:酸性环境下砂岩的损伤主要由长石和方解石的溶解所致,矿物溶解反应分为界面吸附、界面交换、解吸附三个步骤,且步骤最慢者对整个反应起控制作用。矿物溶解速率与H+浓度的n次幂成正比,且0<n≤1,其数值与矿物自身特性和溶液pH值有关。酸-岩反应具有较强的时间依赖性,其速率随腐蚀时间的延长逐渐减小而后趋于稳定,且溶液pH值越小,腐蚀时间越长,砂岩劣化越严重。pH=1、3的盐酸溶液作用下,通过化学损伤模型得到的砂岩孔隙度与通过纵波波速得到的孔隙度随腐蚀时间的变化规律具有较好的一致性,验证了模型的有效性与合理性。研究结果可为酸化学环境下岩体工程的安全性评估与灾害防治提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁艳玲
霍润科
宋战平
穆彦虎
秋添
宋子羿
关键词:  砂岩  矿物溶解  化学损伤模型  孔隙度  纵波波速    
Abstract: The deterioration of the physical and mechanical properties of rock under an acidic environment is essentially caused by the dissolution of rock minerals and further the expansion and penetration of pores and microcracks.To study the dissolution characteristics of sandstone minerals in an acidic environment, pH=1, 3 HCl solution was selected as the corrosive environment.The composition and content of sandstone minerals were identified by X-ray diffraction test, and the pH value of the solution, cation concentration, mass, and longitudinal wave velocity of samples were tested under different immersion periods.The dynamic chemical damage model for sandstone reflecting the corrosion process was established based on the mineral dissolution theory and chemical kinetic principle.The results show that the damage of sandstone in an acidic environment was mainly caused by the dissolution of feldspar and calcite.The mineral dissolution can be divided into three steps:interface adsorption, interface exchange, and desorption, and the slowest one plays a controlling role.The dissolution rate was proportional to the nth power of the H+ concentration, and the value of n (0<n≤1) was related to the properties of minerals and the pH value of the solution.The acid-rock reaction was time-dependent;the reaction rate decreased with the corrosion time and tended to be stable.The sandstone deteriorated more seriously with the lower pH value and longer corrosion time.Under the action of pH=1, 3 HCl solution, the change laws of sandstone porosity with corrosion time, obtained by the chemical damage model, was in good agreement with that obtained by the longitudinal wave velocity, which verified the validity and rationality of the model built in the study.The finding can provide theoretical references for safety assessment and disaster prevention of rock mass engineering under an acidic environment.
Key words:  sandstone    mineral dissolution    chemical damage model    porosity    longitudinal wave velocity
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU451  
基金资助: 国家自然科学基金(41172237;52178393);冻土工程国家重点实验室开放基金(SKLFSE202107)
通讯作者:  *霍润科,西安建筑科技大学土木工程学院教授、博士研究生导师。1987年获华北水利水电学院地质系本科学位,1994年获西安理工大学岩土工程硕士学位,2006年获西安理工大学岩土工程博士学位。目前主要从事环境岩土工程、隧道与地下工程方面的研究与教学工作。发表学术论文60余篇,出版专著1部,主持参与国家自然科学基金项目2项。huorkdq@xauat.edu.cn   
作者简介:  梁艳玲,2018年6月获得西安建筑科技大学土木工程学院本科学位。现为西安建筑科技大学土木工程学院博士研究生,在霍润科教授的指导下进行环境岩土工程方面的研究。
引用本文:    
梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
LIANG Yanling, HUO Runke, SONG Zhanping, MU Yanhu, QIU Tian, SONG Ziyi. Dynamically Chemical Damage Model for Sandstone Based on Mineral Dissolution Theory. Materials Reports, 2024, 38(8): 22080206-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080206  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080206
1 Zhu C P, Liu H L. Rock and Soil Mechanics, 2007, 28(3), 625(in Chinese).
朱春鹏, 刘汉龙. 岩土力学, 2007, 8(3), 625.
2 Knauss K G, Wolery T J. Geochimica et Cosmochimica Acta, 1986, 50(11), 2481.
3 Heigeson H C, Murphy W M, Aagaard P. Geochimica et Cosmochimica Acta, 1984, 48(12), 2405.
4 Rimstidt J D, Barnes H L. Geochimica et Cosmochimica Acta, 1980, 44(11), 1683.
5 Zhang P Y, Feng X X, Liu G, et al. Materials Reports, 2023, 37(17), 1(in Chinese).
张鹏翼, 封孝信, 刘刚, 等. 材料导报, 2023, 37(17), 1.
6 Yue G F, Li X Y, Gan H N, et al. Acta Geologica Sinica, 2020, 94(7), 2107(in Chinese).
岳高凡, 李晓媛, 甘浩男, 等. 地质学报, 2020, 94(7), 2107.
7 Wang J X, Zhu H H, Tang Y Q, et al. Journal of Tongji University(Natural Science), 2004, 32(9), 1126(in Chinese).
王建秀, 朱合华, 唐益群, 等. 同济大学学报(自然科学版), 2004, 32(9), 1126.
8 Wang J X. Theoretical and applied analysis on hydrochemical-hydraulic damage in tunnel surrounding rock. Ph. D. Thesis, Southwest Jiaotong University, 2002(in Chinese).
王建秀. 腐蚀损伤岩体中的水化-水力损伤及其在隧道工程中的应用研究. 博士学位论文, 西南交通大学, 2002.
9 Li Peng, Liu Jian, Li Guohe, et al. Rock and Soil Mechanics, 2011, 32(2), 380(in Chinese).
李鹏, 刘建, 李国和, 等. 岩土力学, 2011, 32(2), 380.
10 Li P. Journal of Railway Engineering Society, 2018, 35(4), 16(in Chinese).
李鹏. 铁道工程学报, 2018, 35(4), 16.
11 Ma T, Ding W X, Wang H Y, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(8), 1550(in Chinese).
马涛, 丁梧秀, 王鸿毅, 等. 岩土工程学报, 2021, 43(8), 1550.
12 Wang W, Liu T G, Lv J, et al. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2), 3607(in Chinese).
王伟, 刘桃根, 吕军, 等. 岩石力学与工程学报, 2012, 31(S2), 3607.
13 Wang W, Liu T G, Li X H, et al. Journal of Central South University(Science and Technology), 2015, 46(10), 38017(in Chinese).
王伟, 刘桃根, 李雪浩, 等. 中南大学学报(自然科学版), 2015, 46(10), 3801.
14 Huo R K, Liang Y L, Li S G, et al. Arabian Journal of Geosciences, 2022, 15(6), 1.
15 Liang Y L, Huo R K, Mu Y H, et al. International Journal of Geomechanics, 2023, 23(3), 04022300.
16 Liang Y L, Huo R K, Song Z P, et al. Journal of China Coal Society, 2023, 48(4), 1527(in Chinese).
梁艳玲, 霍润科, 宋战平, 等. 煤炭学报, 2023, 48(4), 1527.
17 Ma T S, Chen P. Petroleum Exploration and Development, 2014, 41(2), 249.
18 Li N, Zhu Y M, Su B, et al. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(2), 243.
19 Han T L, Shi J P, Chen Y S, et al. International Journal of Geomecha-nics, 2018, 18(10), 04018121.
20 Han T L, Chen Y S, Shi J P, et al. Chinese Journal of Rock Mechanics and Engineering. 2013, 32(S2), 3064(in Chinese).
韩铁林, 陈蕴生, 师俊平, 等. 岩石力学与工程学报, 2013, 32(S2), 3064.
21 Zhou B, Zhang D M, Xu J, et al. Coal Geology & Exploration, 2020, 48(4), 16(in Chinese).
周斌, 张东明, 许江, 等. 煤田地质与勘探, 2020, 48(4), 165.
22 Zhang Q S, Yang G S, Ren J X. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1), 30(in Chinese).
张全胜, 杨更社, 任建喜. 岩石力学与工程学报, 2003, 22(1), 30.
23 GB/T0266-2013, Standard for tests method of engineering rock masses, China Planning Press, China, 2013(in Chinese).
GB/T50266-2013, 工程岩体试验方法标准, 中国计划出版社, 2013.
24 Xiao G Y, Chen X J, Wei C F, et al. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1), 3283(in Chinese).
肖桂元, 陈学军, 韦昌富, 等. 岩石力学与工程学报, 2016, 35(S1), 3283.
25 Wang Y L, Tang J X, Jiang J, et al. Journal of China Coal Society, 2017, 42(1), 227(in Chinese).
王艳磊, 唐建新, 江君, 等. 煤炭学报, 2017, 42(1), 227.
26 Liang Y L, Huo R K, Song Z P, et al. Journal of Building Engineering, 2023, 71, 106499.
27 Tan K X, Zhang Z R, Wang Z G. Acta Mineralogica Sinica, 1994, 14(3), 207(in Chinese).
谭凯旋, 张哲儒, 王中刚. 矿物学报, 1994, 14(3), 207.
28 Weng L Q, Yang H F, Wang F R, et al. Materials Reports, 2011, 25(S2), 425.
翁履谦, 杨海峰, 王逢睿, 等. 材料导报, 2011, 25(S2), 425.
29 Zhao Y Y, Zheng Y F. 2011, 27(2), 501(in Chinese).
赵彦彦, 郑永飞. 岩石学报, 2011, 27(2), 501.
30 Zhang Y X, Xue Y Q, Cao Y Q. Coal Geology & Exploration, 1996, 24(5), 34.
张永祥, 薛禹群, 曹玉清. 煤田地质与勘探, 1996, 24(5), 34.
31 Liang Y L, Huo R K, Song S S, et al. Journal of Building Engineering, 2024, 86, 108789.
32 Wyllie M R J, Gregory A R, Gardner L W. Geophysics, 1956, 21(129), 41.
33 Gardner G H F, Gardner L W, Gregory A R. Geophysics, 1974, 39(6), 770.
34 The Professional Standards Compilation Group of Peoples Republic of China. Specifications for rock tests in water conservancy and hydroelectric engineering:DL/T 5368-2007, China Water Power Press, China, 2007(in Chinese).
中华人民共和国行业标准编写组. 水电水利工程岩石试验规程:DL/T 5368-2007, 中国水利水电出版社, 2007.
35 Chen Y, Huang T F. Rock physics, Peking University Press, China, 2001, pp.49(in Chinese).
陈颙, 黄庭芳. 岩石物理学, 北京大学出版社, 2001, pp.49.
[1] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[2] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[3] 王林峰,曾韬睿,翁其能. 基于统计损伤理论的饱和细粒砂岩本构模型研究[J]. 材料导报, 2019, 33(22): 3727-3731.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed