Abstract: Quenching-partitioning(QP) steel, as the typical representative of the third generation of advanced high strength steel, provides an important guarantee for automotive lightweight, improving energy efficiency and realizing carbon peak and carbon neutralization. In quenching-partitioning (QP) process, the initial microstructure (residual austenite+martensite) is formed during quenching, and the partitioning process is the key to retaining and stabilizing the residual austenite. In addition to carbon partitioning there are often some phenomena such as short-range diffusion of substitutional atoms, austenite/martensite interface migration, austenite/martensite transformation, austenite/bainite transformation and carbide precipitation occurring in the partitioning process of QP steel, which make it difficult to study the microstructure evolution and the carbon concentration distribution. On the basis of corresponding experiments, many calculation models have been put forward to explore the underlying mechanism of complex phenomena in the specific partitioning process. In this paper, the calculation models of carbon partitioning process in QP steel are reviewed from the following two perspectives: (1) the calculation models that are based on thermodynamics and dynamics, including the ideal CCE model, QP-PE model and QP-LE model with considering interface mobility, CCEθ model and QPT-LE model with considering carbide precipitation, the coupling model with considering bainite transformation and the coupling model with considering the simultaneous occurrence of multiple phenomena; (2) the adoption of phase field method to performing relevant calculation simulation. Finally, future research prospects for the calculation model for carbon partitioning are discussed.
通讯作者:
*王刚,营口理工学院材料科学与工程学院副院长,博士,教授,硕士研究生导师。辽宁省“百千万人才工程”千人层次人才,“营口英才”计划领军人才。主要从事先进金属材料制造和加工基础理论和应用研究。目前重点从事泡沫铝复合材料、先进高强钢、钛铝合金和生物医用钛合金的制备、加工和应用等方面的研究工作。已在Mate-rials Science and Engineering A、Journal of Materials Science、Journal of Materials Science and Technology等国内外学术期刊上发表论文 30 余篇,出版学术专著1部。33171733@qq.com 王岭,博士,副教授,硕士研究生导师。辽宁省“百千万人才工程” 万人层次人才,营口英才,全国材料与器件科学家智库轻合金材料专家委员会委员。从事变形镁合金变形工艺开发和微观组织调控相关研究,发表SCI收录学术论文20余篇,获得辽宁省自然科学学术成果奖三等奖、辽宁省出入境检验检疫局“科技兴检奖”二等奖、营口市自然科学学术成果奖一等奖、二等奖、三等奖。在Journal of Materials Science and Technology、Mate-rials Science and Engineering A等期刊发表SCI收录论文20余篇。30732029@qq.com
刘杨, 王刚, 王岭, 齐鹏远, 杨健, 王博全, 郑伟. 高强韧钢淬火-配分工艺中碳配分计算模型的研究进展[J]. 材料导报, 2024, 38(8): 22080207-9.
LIU Yang, WANG Gang, WANG Ling, QI Pengyuan, YANG Jian, WANG Boquan, ZHENG Wei. Research Progress of Calculation Models for Carbon Partitioning During Quenching-Partitioning Process in High Strength and Toughness Steel. Materials Reports, 2024, 38(8): 22080207-9.
1 Hosseini N, Forouzan F, Vuorinen E. Materials Today Communications, 2022, 31, 103503. 2 Li W, Gia X Q, Jin X J. Acta Metallurgica Sinica, 2022, 58(4), 444(in Chinese). 李伟, 贾兴祺, 金学军. 金属学报, 2022, 58(4), 444. 3 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 21070186(in Chinese). 程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 21070186. 4 Ma T M, Yi H L, Lu H Z, et al. Strategic Study of CAE, 2009, 11(9), 20(in Chinese). 马图鸣, 易红亮, 路洪洲, 等. 中国工程科学, 2009, 11(9), 20. 5 Pierce D T, Coughlin D R, Clarke K D, et al. Acta Materialia, 2018, 151, 454. 6 Seo E J, Cho L, De Cooman B C, et al. Acta Materialia, 2016, 107, 354. 7 Seo E J, Cho L, Estrin Y, et al. Acta Materialia, 2016, 113, 124. 8 Allain S Y P, Geandier G, Hell J C, et al. Scripta Materialia, 2017, 131, 15. 9 Bleck W G, Guo X F, Ma Y. Steel Research International, 2017, 8(10), 1700218. 10 Liu L, He B B, Huang M X. Advanced Engineering Materials, 2018, 20(6), 1701083. 11 Kim B, Sietsma J, Santofimia M J. Materials & Design, 2017, 127, 336. 12 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering: A, 2020, 795, 140023. 13 Edmond D V, He K, Rizzo F C, et al. Materials Science and Enginee-ring: A, 2006, 438-440, 25. 14 Speer J G, Edmonds D V, Rizzo F C, et al. Current Opinion in Solid State and Materials Science, 2004, 8(3-4), 219. 15 Koistinen D P, Marburger R E. Acta Metallurgica, 1959, 7(1), 59. 16 Hultgren A. ASM Transactions, 1947, 39, 915. 17 Hultgren A. Jernkontorets Annaler, 1951, 135, 403. 18 Kozeschnik E, Vitek J M. Calphad, 2000, 24(4), 495. 19 Speer J G, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611. 20 Clarke A J, Speer J G, Matlock D K, et al. Scripta Materialia, 2009, 61(2), 149. 21 Behera A K, Olson G B. Scripta Materialia, 2018, 147, 6. 22 Behera A K, Olson G B. The Journal of the Minerals, Metals & Materials Society, 2019, 71, 1375. 23 Santofimia M J, Zhao L, Sietsma J. Scripta Materialia, 2008, 59(2), 159. 24 Santofimia M J, Speer J G, Clarke A J, et al. Acta Materialia, 2009, 57(15), 4548. 25 Purdy G, Ågren J, Borgenstam A, et al. Metallurgical and Materials Transactions A, 2011, 42A(12), 3703. 26 Toji Y, Matsuda H, Herbig M, et al. Acta Materialia, 2014, 65, 215. 27 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 144, 666. 28 Dai Z B, Wang X, He J G, et al. Metallurgical and Materials Transactions A, 2017, 48A(7), 3168. 29 Dai Z B, Yang Z G, Zhang C, et al. Acta Materialia, 2020, 200, 597. 30 Dai Z B, Ding R, Yang Z G, et al. Acta Materialia, 2018, 152, 288. 31 Toji Y, Miyamoto G, Rabbe D. Acta Materialia, 2015, 86, 137. 32 Hsu T Y, Xu Z Y. Materials Science Forum, 2007, 561-565, 2283. 33 Hsu T Y. International Heat Treatment and Surface Engineering, 2008, 2, 64. 34 Hsu T Y, Jin X J. Advanced steels, Springer, Berlin, Heidelberg, 2011, pp.67. 35 Hsu T Y, Jin X J, Rong Y H. Journal of Alloys and Compounds, 2013, 577(S1), S568. 36 Zhang J Z, Dai Z B, Zeng L Y, et al. Acta Materialia, 2021, 217, 117176. 37 Li Y, Chen S, Wang C C, et al. Acta Materialia, 2020, 188, 528. 38 Nishikawa A S, Santofimia M J, Sietsma J, et al. Acta Materialia, 2018, 142, 142. 39 Pohjonen A, Bahu S R, Visuri V V. Computational Materials Science, 2022, 209, 111413. 40 Takahama Y, Santofimia M, Mecozzi M G, et al. Acta Materialia, 2012, 60(6-7), 2916. 41 Mecozzi M G, Eiken J, Santofimia M J, et al. Computational Materials Science, 2016, 112, 245.