Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2407-2411    https://doi.org/10.11896/j.issn.1005-023X.2018.14.015
  无机非金属及其复合材料 |
聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线
牛建刚1, 刘江森1, 王佳雷2
1 内蒙古科技大学土木工程学院, 包头 014010;
2 中南大学土木工程学院, 长沙 410083
Secondary Peak Load Curve of Polypropylene Crude Fiber Reinforced Lightweight Aggregate Concrete Beam
NIU Jiangang1, LIU Jiangsen1, WANG Jialei2
1 School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010;
2 School of Civil Engineering, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 2528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究聚丙烯粗纤维轻骨料混凝土梁弯曲荷载挠度曲线中的二次峰值问题以及拟合弯曲强度与纤维掺量间的定量关系,在轻骨料混凝土中掺入聚丙烯粗纤维,聚丙烯粗纤维掺量分别为0 kg/m3、3 kg/m3、6 kg/m3和9 kg/m3。采用四点弯曲试验,研究纤维掺量与轻骨料混凝土间的增强关系,同时引入二次峰值荷载模型,通过与其他文献数据对比,探讨弯曲荷载挠度曲线二次峰值现象的影响因素。结果表明,当聚丙烯粗纤维掺量为6 kg/m3时,增强和增韧效果较好;弯曲强度和纤维掺量间拟合的定量关系式中ατ=3.360,与选取文献报道的ατ值相比,未出现二次峰值现象的ατ数值较小,而出现二次峰值荷载现象的ατ值均较大,较大的ατ值与弯曲荷载挠度曲线形成二次峰值荷载有关;对于聚丙烯纤维轻骨料混凝土梁弯曲荷载挠度曲线出现的二次峰值问题,二次峰值荷载模型给出了较好的解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛建刚
刘江森
王佳雷
关键词:  聚丙烯纤维  轻骨料混凝土梁  弯曲强度  二次峰值荷载模型    
Abstract: In order to study the problem of secondary peak load of polypropylene fiber reinforced concrete beams in the bending deflection curve and the quantitative relationship between fitting flexural strength and fiber content, the lightweight aggregate concrete was mixed with polypropylene fiber, the polypropylene fiber content was 0 kg/m3,3 kg/m3,6 kg/m3 and 9 kg/m3, respectively. Four-point bending beam test was adopted to study the relationship between the fiber content and the lightweight aggregate concrete. By introducing secondary peak load model and by comparing with other literature data, the influential factors of the secondary peak load of the bending load deflection curve were discussed. The results show that when polypropylene fiber content is 6 kg/m3, bending toughness and flexural strength are better. In the fitting quantitative relationship between flexural strength and the fiber content ατ=3.360, compared with the ατ value in the selected literature, the value of ατ which the secondary peak does not appear is smaller, while the value of ατ which the secondary peak load appears is larger. The larger ατ value is related to the secondary peak load of the bending load deflection curve formation. The problem of secondary peak of polypropylene fiber lightweight aggregate reinforced concrete beam in the bending deflection curve can be better explained by secondary peak load model.
Key words:  polypropylene fiber    lightweight aggregate reinforced concrete beam    flexural strength    secondary peak load model
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51368042); 内蒙古自治区青年科技英才支持计划(NJYT-18-A06)
作者简介:  牛建刚:男,1976年生,博士,教授,主要从事混凝土结构耐久性方面的研究 E-mail:niujiangang@imust.edu.cn
引用本文:    
牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
NIU Jiangang, LIU Jiangsen, WANG Jialei. Secondary Peak Load Curve of Polypropylene Crude Fiber Reinforced Lightweight Aggregate Concrete Beam. Materials Reports, 2018, 32(14): 2407-2411.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.015  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2407
1 Zhao S, Li C, Zhao M, et al. Experimental study on autogenous and drying shrinkage of steel fiber reinforced lightweight-aggregate concrete[J]. Advances in Materials Science and Engineering,2016,2016(6):1.
2 Sun H, Lieping Y E, Ding J, et al. Shrinkage and creep of high-strength lightweight aggregate concrete[J]. Journal of Tsinghua University,2007,47(6):765.
3 Libre N A, Shekarchi M, Mahoutian M, et al. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice[J]. Construction and Building Materials,2011,25(5):2458.
4 Altun F, Aktas B. Investigation of reinforced concrete beams beha-vior of steel fiber added lightweight concrete[J]. Construction and Building Materials,2013,38(38):575.
5 Balendran R V, Zhou F P, Nadeem A, et al. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete[J]. Building and Environment,2002,37(12):1361.
6 Domagala L. Modification of properties of structural lightweight concrete with steel fibres[J]. Journal of Civil Engineering and Management,2011; 17(1):36.
7 Söylev T A,Özturan T. Durability, physical and mechanical properties of fiber reinforced concretes at low-volume fraction[J]. Construction and Building Materials,2014,73:67.
8 Cengiz O, Turanli L. Comparative evaluation of steel mesh, steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test[J]. Cement and Concrete Research,2004,34(8):1357.
9 Alani A M, Beckett D. Mechanical properties of a large scale synthe-tic fibre reinforced concrete ground slab[J]. Construction and Building Materials,2013,41(2):335.
10 Peyvandi A, Soroushian P, Jahangirnejad S. Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement[J]. Construction and Building Materials,2013,45(45):36.
11 Kaufmann J, Frech K, Schuetz P, et al. Rebound and orientation of fibers in wet sprayed concrete applications[J]. Construction and Building Materials,2013,49(6):15.
12 Shi Y, Tuladhar R, Feng S, et al. Use of macroplastic fibres in concrete: A review[J]. Construction & Building Materials,2015,93:180.
13 Tanyildizi H. Statistical analysis for mechanical properties of polypropylene fiber reinforced lightweight concrete containing silica fume exposed to high temperature[J]. Materials & Design,2009,30(8):3252.
14 Banthia N, Gupta R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete[J]. Cement and Concrete Research,2006,36(7):1263.
15 Liu X, Ye G, Schutter G D, et al. On the mechanism of polypropy-lene fibres in preventing fire spalling in self-compacting and high performance cement paste[J]. Cement and Concrete Research,2008,38(4):487.
16 Behfarnia K, Behravan A. Application of high performance polypropylene fibers in concrete lining of water tunnels[J]. Materials & Design,2014,55(6):274.
17 Alberti M G, Enfedaque A, Gálvez J C, et al. Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions[J]. Materials & Design,2014,60(8):57.
18 Fraternali F, Ciancia V, Chechile R, et al. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete[J]. Composite Structures,2011,93(9):2368.
19 Yoo D Y, Yoon Y S, Banthia N. Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate[J]. Cement & Concrete Composites,2015,64(2):84.
20 Alberti M G, Enfedaque A, Gálvez J C. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete[J]. Construction and Building Materials,2014,55(4):274.
21 Holschemacher K, Mueller T, Ribakov Y. Effect of steel fibres on mechanical properties of high-strength concrete[J]. Materials & Design,2010,31(5):2604.
22 Fan Shuhua, Qin shuang, Ding Yining. Steel fiber distribution and its effect on the toughness of steel fiber concrete beams[J]. Industrial Construction,2013,43(2):104(in Chinese).
范树华,覃霜,丁一宁.钢纤维在梁截面的分布及其对混凝土梁弯曲韧性的影响[J].工业建筑,2013,43(2):104.
23 Deng Zongcai, Liu Gouping, Du Chaochao, et al. Flexural toughness of a new kind of macro-polyolefin fiber reinforced high performance concrete[J]. Journal of Building Materials,2014,17(2):228(in Chinese).
邓宗才,刘国平,杜超超,等.新型粗聚烯烃纤维高性能混凝土弯曲韧性[J].建筑材料学报,2014,17(2):228.
24 Ding Yining, Cao Jifeng. Experimental study of behaviour of modified macropolypropylene fiber reinforced high performance concrete[J]. Journal of Dalian University of Technology,2007,47(5):707(in Chinese).
丁一宁,曹继锋.聚丙烯长纤维高性能混凝土性能研究[J].大连理工大学学报,2007,47(5):707.
25 Song Heyue. Assessment of steel fiber distribution in concrete matrix and its effect on toughness[D]. Dalian: Dalian University of Techno-logy,2016(in Chinese).
宋贺月.钢纤维在混凝土基体中的分布规律及与韧性的关系[D].大连:大连理工大学,2016.
26 Naaman A E, Reinhardt H W. Proposed classification of HPFRC composites based on their tensile response[J]. Materials and Structures,2006,39(5):547.
27 Oh B H, Ji C K, Choi Y C. Fracture behavior of concrete members reinforced with structural synthetic fibers[J]. Engineering Fracture Mechanics,2007,74(1):243.
28 Costa H M D, Ramos V D, Oliveira M G D. Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance[J]. Polymer Testing,2007,26(5):676.
29 Swamy R N, Al-Ta’An S A. Deformation and ultimate strength in flexure of reinforced concrete beams made with steel fiber concrete[J]. ACI Structural Journal,1981,78(5):395.
30 Pajak M, Ponikiewski T. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers[J]. Construction and Building Materials,2013,47(10):397.
[1] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[2] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[3] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[4] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed