Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 121-124    https://doi.org/10.11896/j.issn.1005-023X.2017.022.024
  材料研究 |
纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*
宋学锋,王骏,王艳
西安建筑科技大学材料与矿资学院,西安 710055
Flexural Strength and Flexural Toughness of Fiber/Hybrid Fibers and Slag geopolymers Composites
SONG Xuefeng, WANG Jun, WANG Yan
College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发矿渣地质聚合物存在脆性大、韧性差、易开裂等缺陷。利用纤维/混杂纤维对矿渣地质聚合物进行改性,以纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性作为考察指标,分析了3种单一纤维及2种混杂纤维对矿渣地质聚合物的增强与增韧效果。研究结果表明,碳纤维增强效果优于钢纤维、玄武岩纤维,钢纤维增韧效果优于碳纤维、玄武岩纤维,而玄武岩纤维增强及增韧效果相对较差;碳纤维与钢纤维混杂,可充分发挥碳纤维的增强效应和钢纤维的增韧效应,适当掺量下混杂纤维较单一纤维具有更好的增强与增韧效果;纤维与浆料的容重差对矿渣地质聚合物硬化体的均质性具有重要影响,碳纤维与钢纤维混杂可显著降低不同加载方向下矿渣地质聚合物弯曲强度与弯曲韧性的离散性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋学锋
王骏
王艳
关键词:  碱激发矿渣地质聚合物  纤维  混杂纤维  弯曲强度  弯曲韧性    
Abstract: Alkali-activated slag geopolymers have some weaknesses, such as high brittleness, poor toughness, and easy to crack. In this study, fiber/hybrid fibers were used to modify the slag geopolymer. The flexural strength and flexural toughness of the fiber slag geopolymer composites were taken as an index to analyze the reinforcing and toughening effect of three single fibers and two kinds of hybrid fibers on the slag geopolymers. The results indicate that the reinforcing effect of carbon fiber is better than that of steel fiber and basalt fiber, and the toughening effect of steel fiber is better than the others, whereas basalt fiber has relatively poor performance in both reinforcing and toughening effect.Mixing carbon fiber and steel fiber can give full play to the reinforcing effect of carbon fiber and the toughening effect of steel fiber, and adding appropriate amount of mixed fiber will make the materials better in both strength and toughness than the single fiber; The unit weight difference between fiber and slurry has an important effect on the homogenization of the slag geopolymer. The mixture of carbon fiber and steel fiber can significantly reduce the flexural strength and flexural toughness of slag geopolymers under different loading directions.
Key words:  alkali-activated slag geopolymer    fiber    hybrid fiber    flexural strength    flexural toughness
                    发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: *国家自然科学基金(51308445);陕西省住房和城乡建设厅资助项目(2015-K86)
作者简介:  宋学锋:男,1976年生,博士,教授,研究方向为先进水泥基材料的理论与制备E-mail:songxuefeng@xauat.edu.cn
引用本文:    
宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
SONG Xuefeng, WANG Jun, WANG Yan. Flexural Strength and Flexural Toughness of Fiber/Hybrid Fibers and Slag geopolymers Composites. Materials Reports, 2017, 31(22): 121-124.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.024  或          http://www.mater-rep.com/CN/Y2017/V31/I22/121
1 Davidovits J. 30 years of successes and failures in geopolymer application, market trends and potential breakthroughs[C]//Geopolymer 2002 Conference. Melbourne, Australia, 2002.
2 Shi C, Fernandez-Jiminez A, Palomo A. New cements for the 21st century: The pursuits of an alternative to portland cement[J]. Cem Concr Res, 2011,41(7):750.
3 Thomas R J, Ye H, Radlińska A, et al. Alkali-activated slag concrete: A closer look at sustainable alternatives to portland cement[J]. Concr Int, 2016,38:33.
4 Sofi M, van Deventer J S J, Mendis P A, et al. Engineering properties ofinorganic polymer concretes[J]. Cem Concr Res, 2007,37(2):251.
5 Glasby T, Day J, Genrich R, et al. EFC geopolymer concrete aircraft pavements at brisbane west wellcamp airport[C]//Concrete Institute of Australia Conference, 27th, 2015. Melbourne, Victoria, Australia. 2015.
6 Davidovits J. Recent progresses in concretes for nuclear waste and uranium waste containment[J]. Concr Int, 1994,16(12):53.
7 Davidovits J, Davidovics M. Geopolymer: Ultra-high temperature tooling material for the manufacture of advanced composites[J]. Sci Adv Mater Process Eng, 1991,36:1939.
8 Lyon R E. Fire response of geopolymer structural composites[R]. Federal Aviation Administration Washington DC Office of Aviation Research, 1996.
9 Collins F, Sanjayan J. Effect of pore size distribution on drying shrinking of alkaliactivated slag concrete[J]. Cem Concr Res, 2000,30:1401.
10 IsmailI I, Bernal S A, Provis J L, et al. Drying-inducedchanges in the structure of alkali-activated pastes[J]. J Mater Sci,2013,48:3566.
11 Gu Yamin, Fang Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement. A short review[J]. J Chin Ceram Soc, 2012,40(1):76(in Chinese).
顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J].硅酸盐学报, 2012,40(1):76.
12 Zieliński K, Olszewski P. The impact of basaltic fiber on selected physical and mechanical properties of cement mortar[J]. Concr Precasting Plant Technol, 2005,71(3):28.
13 Li Weimin, Xu Jinyu. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading[J]. Mater Sci Eng, 2009,505(1-2):178.
14 Zhang Jun, Ju Xianchun, Guo Zili. Tensile properties of fiber reinforced cement composite with different PVA fibers[J]. J Building Mater, 2009,12(6):706(in Chinese).
张君, 居贤春, 郭自力. PVA纤维直径对水泥基复合材料抗拉性能的影响[J]. 建筑材料学报, 2009,12(6):706.
15 Sun Wei, Qing Hongping, Cheng Huisu. The effect of the combination of hybrid fibers and expansive agent on the physical properties of cementitious composite[J]. J Chin Ceram Soc, 2000,28(2):95(in Chinese).
孙伟, 钱红萍, 陈惠苏. 纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J]. 硅酸盐学报, 2000,28(2):95.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[5] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[6] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[7] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[8] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[9] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[10] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[11] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[12] 金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
[13] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[14] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[15] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed