Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 121-124    https://doi.org/10.11896/j.issn.1005-023X.2017.022.024
  材料研究 |
纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*
宋学锋,王骏,王艳
西安建筑科技大学材料与矿资学院,西安 710055
Flexural Strength and Flexural Toughness of Fiber/Hybrid Fibers and Slag geopolymers Composites
SONG Xuefeng, WANG Jun, WANG Yan
College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发矿渣地质聚合物存在脆性大、韧性差、易开裂等缺陷。利用纤维/混杂纤维对矿渣地质聚合物进行改性,以纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性作为考察指标,分析了3种单一纤维及2种混杂纤维对矿渣地质聚合物的增强与增韧效果。研究结果表明,碳纤维增强效果优于钢纤维、玄武岩纤维,钢纤维增韧效果优于碳纤维、玄武岩纤维,而玄武岩纤维增强及增韧效果相对较差;碳纤维与钢纤维混杂,可充分发挥碳纤维的增强效应和钢纤维的增韧效应,适当掺量下混杂纤维较单一纤维具有更好的增强与增韧效果;纤维与浆料的容重差对矿渣地质聚合物硬化体的均质性具有重要影响,碳纤维与钢纤维混杂可显著降低不同加载方向下矿渣地质聚合物弯曲强度与弯曲韧性的离散性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋学锋
王骏
王艳
关键词:  碱激发矿渣地质聚合物  纤维  混杂纤维  弯曲强度  弯曲韧性    
Abstract: Alkali-activated slag geopolymers have some weaknesses, such as high brittleness, poor toughness, and easy to crack. In this study, fiber/hybrid fibers were used to modify the slag geopolymer. The flexural strength and flexural toughness of the fiber slag geopolymer composites were taken as an index to analyze the reinforcing and toughening effect of three single fibers and two kinds of hybrid fibers on the slag geopolymers. The results indicate that the reinforcing effect of carbon fiber is better than that of steel fiber and basalt fiber, and the toughening effect of steel fiber is better than the others, whereas basalt fiber has relatively poor performance in both reinforcing and toughening effect.Mixing carbon fiber and steel fiber can give full play to the reinforcing effect of carbon fiber and the toughening effect of steel fiber, and adding appropriate amount of mixed fiber will make the materials better in both strength and toughness than the single fiber; The unit weight difference between fiber and slurry has an important effect on the homogenization of the slag geopolymer. The mixture of carbon fiber and steel fiber can significantly reduce the flexural strength and flexural toughness of slag geopolymers under different loading directions.
Key words:  alkali-activated slag geopolymer    fiber    hybrid fiber    flexural strength    flexural toughness
发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: *国家自然科学基金(51308445);陕西省住房和城乡建设厅资助项目(2015-K86)
作者简介:  宋学锋:男,1976年生,博士,教授,研究方向为先进水泥基材料的理论与制备E-mail:songxuefeng@xauat.edu.cn
引用本文:    
宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
SONG Xuefeng, WANG Jun, WANG Yan. Flexural Strength and Flexural Toughness of Fiber/Hybrid Fibers and Slag geopolymers Composites. Materials Reports, 2017, 31(22): 121-124.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.024  或          https://www.mater-rep.com/CN/Y2017/V31/I22/121
1 Davidovits J. 30 years of successes and failures in geopolymer application, market trends and potential breakthroughs[C]//Geopolymer 2002 Conference. Melbourne, Australia, 2002.
2 Shi C, Fernandez-Jiminez A, Palomo A. New cements for the 21st century: The pursuits of an alternative to portland cement[J]. Cem Concr Res, 2011,41(7):750.
3 Thomas R J, Ye H, Radlińska A, et al. Alkali-activated slag concrete: A closer look at sustainable alternatives to portland cement[J]. Concr Int, 2016,38:33.
4 Sofi M, van Deventer J S J, Mendis P A, et al. Engineering properties ofinorganic polymer concretes[J]. Cem Concr Res, 2007,37(2):251.
5 Glasby T, Day J, Genrich R, et al. EFC geopolymer concrete aircraft pavements at brisbane west wellcamp airport[C]//Concrete Institute of Australia Conference, 27th, 2015. Melbourne, Victoria, Australia. 2015.
6 Davidovits J. Recent progresses in concretes for nuclear waste and uranium waste containment[J]. Concr Int, 1994,16(12):53.
7 Davidovits J, Davidovics M. Geopolymer: Ultra-high temperature tooling material for the manufacture of advanced composites[J]. Sci Adv Mater Process Eng, 1991,36:1939.
8 Lyon R E. Fire response of geopolymer structural composites[R]. Federal Aviation Administration Washington DC Office of Aviation Research, 1996.
9 Collins F, Sanjayan J. Effect of pore size distribution on drying shrinking of alkaliactivated slag concrete[J]. Cem Concr Res, 2000,30:1401.
10 IsmailI I, Bernal S A, Provis J L, et al. Drying-inducedchanges in the structure of alkali-activated pastes[J]. J Mater Sci,2013,48:3566.
11 Gu Yamin, Fang Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement. A short review[J]. J Chin Ceram Soc, 2012,40(1):76(in Chinese).
顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J].硅酸盐学报, 2012,40(1):76.
12 Zieliński K, Olszewski P. The impact of basaltic fiber on selected physical and mechanical properties of cement mortar[J]. Concr Precasting Plant Technol, 2005,71(3):28.
13 Li Weimin, Xu Jinyu. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading[J]. Mater Sci Eng, 2009,505(1-2):178.
14 Zhang Jun, Ju Xianchun, Guo Zili. Tensile properties of fiber reinforced cement composite with different PVA fibers[J]. J Building Mater, 2009,12(6):706(in Chinese).
张君, 居贤春, 郭自力. PVA纤维直径对水泥基复合材料抗拉性能的影响[J]. 建筑材料学报, 2009,12(6):706.
15 Sun Wei, Qing Hongping, Cheng Huisu. The effect of the combination of hybrid fibers and expansive agent on the physical properties of cementitious composite[J]. J Chin Ceram Soc, 2000,28(2):95(in Chinese).
孙伟, 钱红萍, 陈惠苏. 纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J]. 硅酸盐学报, 2000,28(2):95.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[3] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[6] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[10] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[11] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[12] 王昊煜, 刘哲, 贺思佳, 张健, 杭格格, 卫嬴, 汪秀琛. 可穿戴纤维基能源转换器件研究进展[J]. 材料导报, 2024, 38(3): 22060149-10.
[13] 李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
[14] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[15] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed