Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7033-7041    https://doi.org/10.11896/cldb.19120097
  材料与可持续发展(四)--材料再制造与废弃物料资源化利用* |
高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估
陈宗平1,2, 周济1, 王成1, 苏炜炜1
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
Test on Axial Compression Performance and Residual Bearing Capacity Assessment of Recycled Concrete Filled Circular Steel Tube After Exposure to High Temperatures and Water Cooling
CHEN Zongping1,2, ZHOU Ji1, WANG Cheng1, SU Weiwei1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 7835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高温喷水冷却后圆钢管再生混凝土的轴压性能及剩余承载力评估方法,以再生粗骨料取代率、历经最高温度和冷却方式为变化参数,设计了27个圆钢管再生混凝土试件,对其进行高温喷水冷却后单调轴心受压加载试验,观察了试件的受力全过程和破坏形态,获取其应力-应变曲线并分析了不同变化参数对峰值应力、峰值应变、轴压位移延性以及耗能的影响,结合试件的刚度退化曲线分析其性能退化过程,并参考各规程对高温喷水冷却后试件的剩余承载力进行计算。研究结果表明:高温喷水冷却后,随着历经最高温度的升高,试件的峰值应力显著降低,峰值应变却逐渐增大,轴压位移延性和耗能均呈先增大后减小的变化趋势;随再生骨料取代率的增大,试件的峰值应力、峰值应变变化不大,轴压位移延性先减小后增大,耗能逐渐减小;与自然冷却相比,温度较高时喷水冷却试件的峰值应力、峰值应变、轴压位移延性及耗能均较大。另外,历经最高温度的升高会使喷水冷却试件的刚度退化速率减缓,而不同再生粗骨料取代率试件的刚度退化速率较为接近,且与自然冷却试件相比,喷水冷却试件的刚度退化速率更快。经过理论分析,建议采用日本AIJ规程的计算方法,并引进高温后钢管和混凝土的系数折减,对高温喷水冷却后圆钢管再生混凝土的剩余承载力进行评估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宗平
周济
王成
苏炜炜
关键词:  喷水冷却  圆钢管再生混凝土  轴压性能试验  剩余承载力评估    
Abstract: In order to study the axial compression performance and residual bearing capacity evaluation method of recycled concrete filled circular steel tube (RCFCST) after elevated to high temperatures and water cooling, 27 RCFCST short columns were designed for axial compression test, with the variable parameters of recycled coarse aggregate replacement percentage, temperature and cooling method considered. By the experiment, the whole mechanical process and failure mode of all specimens were observed, and stress-strain curves of specimens were obtained, and the influence of different variation parameters on peak stress, peak strain and axial displacement ductility and energy dissipation were analyzed. The performance degradation process was analyzed by combining the rigidity degradation curves of the specimen. And referring to each regulation, the residual bearing capacity of the specimen after exposure to high temperatures and water coolingwas calculated. The results indicate that with the increase of the maximum temperature, the peak stress of the specimen subjected to high temperatures and water cooling decreases significantly, but the peak strain increases gradually, and the ductility and energy dissipation are the trend of increasing first and then decreasing. With the increase of the replacement percentage of recycled aggregate, the peak stress and strain of the specimen change little, the axial displacement ductility decreases first and then increases, and the energy dissipation decreases gradually. When the temperature is higher, the peak stress, strain, ductility and energy dissipation of specimens subjected to water cooling are larger than those of natural cooling specimens. In addition, the rigidity degradation rate of water cooling specimens will slow down with the increase of the highest temperature, while the rigidity degradation rate of specimens with different replacement percentage is close, and the rigidity degradation rate of water cooling specimens is faster than that of natural cooling specimens. After theoretical analysis, it is suggested to adopt the calculation method of AIJ code of Japan, and introduce the coefficient reduction of steel tube and concrete after high temperature to evaluate the residual bearing capacity of RCFCST short columns after water cooling at high temperature.
Key words:  water cooling    recycled concrete filled circle steel tube    axial compression performance test    residual bearing capacity assessment
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TU398  
基金资助: 国家自然科学基金项目(51578163);八桂学者专项经费资助项目([2019]79号);广西重点研发计划项目(桂科AB17292083)
作者简介:  陈宗平,广西大学教授,博士研究生导师,享受国务院政府特殊津贴,国家百千万人才工程人选、国家有突出贡献中青年专家、全国宝钢优秀教师奖获得者、广西壮族自治区第五批八桂学者、广西第九批优秀专家、广西高校卓越学者、广西大学土木工程建设世界一流学科和结构工程国家重点学科带头人。主要从事结构工程、防灾减灾工程及防护工程方面的教学与研究工作,已发表SCI、EI收录论文150余篇。
周济,2017年6月毕业于安徽理工大学,获得学士学位。2017年9月至今,于广西大学攻读硕士学位,主要从事海洋及近海混凝土结构、钢与混凝土组合结构方面的研究。
引用本文:    
陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
CHEN Zongping, ZHOU Ji, WANG Cheng, SU Weiwei. Test on Axial Compression Performance and Residual Bearing Capacity Assessment of Recycled Concrete Filled Circular Steel Tube After Exposure to High Temperatures and Water Cooling. Materials Reports, 2021, 35(7): 7033-7041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120097  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7033
1 Xiao J Z. Recycled concrete, China Architecture and Building Press, China, 2008(in Chinese).
肖建庄. 再生混凝土, 中国建筑工业出版社, 2008.
2 Chen M C, Fang W, Huang H, et al. Journal of Building Structures, 2019(12), 138(in Chinese).
陈梦成, 方苇, 黄宏, 等. 建筑结构学报, 2019(12), 138.
3 Yang Y F, Hou R. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32 (1), 71(in Chinese).
杨有福, 侯睿. 防灾减灾工程学报, 2012, 32 (1), 71.
4 Liu W C, Cao W L, Zhang J W. Journal of Natural Disasters, 2017, 26 (5), 45(in Chinese).
刘文超, 曹万林, 张建伟. 自然灾害学报, 2017, 26 (5), 45.
5 Yang Y F, Hou R. Thin-Walled Structures, 2012, 59 (10), 1.
6 Li W G, Luo Z Y, Tao Z, et al. Construction and Building Materials, 2017, 146 (8), 571.
7 Huang H, Guo X Y, Chen M C. Building Structure, 2016, 46 (4), 34(in Chinese).
黄宏, 郭晓宇, 陈梦成. 建筑结构, 2016, 46 (4), 34.
8 Wang B, Liu X, Zhao L. Engineering Mechanics, 2015, 32 (S1), 153(in Chinese).
王兵, 刘晓, 赵磊. 工程力学, 2015, 32 (S1), 153.
9 Ding F X, Yu Z W, Wen H L. Journal of Building Materials, 2006(2), 245(in Chinese).
丁发兴, 余志武, 温海林. 建筑材料学报, 2006(2), 245.
10 Han L H. Concrete filled steel tubular structures-theory and practice (Third Edition), China Science Press, China, 2016(in Chinese).
韩林海. 钢管混凝土结构-理论与实践 (第3版), 科学出版社, 2016.
11 Chen Z P, Ke X J, Chen Y L. Chinese Journal of Applied Mechanics, 2014, 31 (6), 959(in Chinese).
陈宗平, 柯晓军, 陈宇良. 应用力学学报, 2014, 31 (6), 959.
12 Chen Z P, Zhou C H, Li Y, et al. Journal of Building Structures, 2017, 38 (12), 105(in Chinese).
陈宗平, 周春恒, 李伊, 等. 建筑结构学报, 2017, 38 (12), 105.
13 Zhong S T. Unified theory of concrete filled steel tube-research and application, Tsinghua University Press, China, 2006(in Chinese).
钟善桐. 钢管混凝土统一理论-研究与应用, 清华大学出版社, 2006.
14 ACI 2005,Building code requirements for structural concrete and commentary, Farmington Hills(MI), American Concrete Institute, Detroit, USA, 2005.
15 AIJ 1997,Recommendations for design and construction of concrete filled steel tubular structures, Architectural Institute of Japan (AIJ), Tokyo, Japan, 1997.
16 Eurocode 4 (EC4). Design of composite steel and concrete structures-Part1-1: General Rules and Rules for Buildings, Brussels, 2004.
[1] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[2] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[3] 袁帅, 易锦, 贺国京. 加筋木-混凝土组合梁承载力计算及尺寸设计方法[J]. 材料导报, 2019, 33(20): 3419-3425.
[4] 蒋友宝, 吴林华, 陈治茂. 配有RPC预制管混凝土组合柱的RC框架抗震性能分析*[J]. CLDB, 2017, 31(23): 90-95.
[5] 单波, 赖大德, 刘福财. 大尺寸RPC管-HSC组合柱轴压性能试验研究*[J]. CLDB, 2017, 31(23): 96-102.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed