Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18076-18082    https://doi.org/10.11896/cldb.20090009
  无机非金属及其复合材料 |
泡沫混凝土压缩性能尺寸效应研究
周宏元1,2, 王业斌1, 王小娟1, 石南南1
1 北京工业大学城市与工程安全减灾教育部重点实验室,北京100124
2 北京理工大学爆炸科学与技术国家重点实验室,北京 100081
Size Effect of Foam Concrete Subjected to Quasi-static Compression
ZHOU Hongyuan1,2, WANG Yebin1, WANG Xiaojuan1, SHI Nannan1
1 Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 15898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对不同密度(450 kg/m3、750 kg/m3、1 050 kg/m3和1 350 kg/m3)和尺寸(50 mm×50 mm×50 mm、100 mm×100 mm×100 mm、150 mm×150 mm×150 mm和200 mm×200 mm×200 mm)的泡沫混凝土试块进行准静态压缩试验,研究了泡沫混凝土密度对其尺寸效应的影响。首先,通过观察泡沫混凝土裂纹的开展发现随着试块尺寸的增大,首条裂缝倾向于从试块中部逐渐变为从试块四周出现。其次,试验数据表明泡沫混凝土内存在尺寸效应,且随着密度的增加,尺寸效应逐渐显著;基于试验数据研究了泡沫混凝土抗压强度、压实应变、比吸能与试块尺寸的关系。再者,将三种常见泡沫混凝土唯象本构模型(分别为Avalle模型、Wang模型、李广良模型)与试验数据对比后,发现Wang模型的预测结果较好。最后,在Wang模型的基础上,引入损伤因子和Bažant尺寸效应律研究了平台应力与试块尺寸的关系,建立了基于泡沫混凝土密度和尺寸的一维损伤唯象本构模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宏元
王业斌
王小娟
石南南
关键词:  泡沫混凝土  尺寸效应  抗压强度  比吸能  唯象本构模型  裂缝开展    
Abstract: The quasi-static compression tests were conducted on foam concrete specimens with different densities (450 kg/m3, 750 kg/m3, 1 050 kg/m3, and 1 350 kg/m3) and sizes (50 mm×50 mm×50 mm, 100 mm×100 mm×100 mm, 150 mm×150 mm×150 mm and 200 mm×200 mm×200 mm), to investigate the size effect of foam concrete subjected to quasi-static compression. Firstly, by observing the crack propagation in specimens during the test, it is found that the first crack is more likely to appear in the surrounding area from the central area with increasing size of specimens. Secondly, based on the experimental data, the obvious size effect of foam concrete is observed and the effect is more significant with increasing density. Then the relationship between compressive strength, compacting strain, specific energy absorption, and block size are investigated with experimental data. Moreover, three widely applied phenomenological constitutive models, namely Avalle model, Wang mo-del, and Li model, are compared with the experiment data, and it is found that the Wang model is able to provide a good prediction. Therefore, based on the Wang model, damage index and Bažant dimension effect law are introduced to study the relationship between plateau stress and size, and a one-dimensional damage phenomenological constitutive model based on the density and size of foam concrete is established.
Key words:  foam concrete    size effect    compressive strength    specific energy absorption    phenomenological constitutive model    crack propagation
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TU528.2  
基金资助: 国家重点研发计划(2019YFD1101005);国家自然科学基金项目(51808017;51778028);北京市教委科技计划一般项目(KM201810005019)
作者简介:  周宏元,北京工业大学城建学部教授。2012年7月毕业于新加坡南洋理工大学,获博士学位。主要从事结构在爆炸、冲击、震动等极端载荷下响应与防护领域的研究。
王小娟,北京工业大学城建学部副教授。2013年2月毕业于新加坡国立大学,获博士学位。主要从事吸能材料和结构、抗爆抗冲击牺牲结构、结构健康监测和损伤识别等研究工作。
引用本文:    
周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
ZHOU Hongyuan, WANG Yebin, WANG Xiaojuan, SHI Nannan. Size Effect of Foam Concrete Subjected to Quasi-static Compression. Materials Reports, 2021, 35(18): 18076-18082.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090009  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18076
1 Qian J S, Luo H, Wang Z.Journal of Building Meterials, 1998(2), 30(in Chinese).
钱觉时, 罗晖, 王智. 建筑材料学报, 1998(2), 30.
2 Su J. The research on the size effect of concrete behavior in compression. Ph.D Thesis, Hunan University, China, 2013 (in Chinese).
苏捷. 混凝土受压与受拉性能的尺寸效应研究. 博士学位论文, 湖南大学, 2013.
3 Zhang J, Yu Z P, Fan Z Y, et al. Concrete, 2019(12), 60(in Chinese).
张军, 余振鹏, 樊梓元,等. 混凝土, 2019(12), 60.
4 Wu T, Liu X, Wei H, et al.Journal of Building Structures, 2020, 41(6), 119(in Chinese).
吴涛, 刘喜, 魏慧,等. 建筑结构学报, 2020, 41(6), 119.
5 He J, Xu X X.Journal of Water Resources and Architectural Engineering, 2018, 16(4), 89(in Chinese).
何吉, 徐小雪.水利与建筑工程学报, 2018, 16(4), 89.
6 Jiang S Y, Tao S, Yao W L, et al. Materials Reports B: Research Papers, 2017, 31(12), 161(in Chinese).
江世永, 陶帅, 姚未来, 等. 材料导报:研究篇, 2017, 31(12), 161.
7 Zhang L, Yu Z P, Shen L, et al. New Building Materials, 2019, 46(3), 18(in Chinese).
张丽, 余振鹏, 沈丽,等. 新型建筑材料, 2019, 46(3), 18.
8 Li B Y, Wu B Y, She Y X, et al. Building Science, 2020, 36(3), 38(in Chinese).
李搏宇, 吴炳延, 佘跃心, 等. 建筑科学, 2020, 36(3), 38.
9 Wang Z H, Liu D, Yuan F F, et al. Acta Materiae Compositae Sinica, 2019, 36(5), 1275(in Chinese).
王作虎, 刘杜, 袁非凡,等. 复合材料学报, 2019, 36(5), 1275.
10 Ye C, Li J H, Gu J F, et al.Industrial Construction, 2020, 50(2), 177(in Chinese).
叶超, 李俊华, 顾炬锋, 等. 工业建筑, 2020, 50(2), 177.
11 Zhou J H, Kang T B, Wang F C, et al. Journal of Shenyang Jianzhu University(Natural Science), 2018, 34(6), 1036(in Chinese).
周静海, 康天蓓, 王凤池, 等. 沈阳建筑大学学报(自然科学版), 2018, 34(6), 1036.
12 Zhang G J. Journal of Architecture and Civil Engineering, 2019, 36(5), 119(in Chinese).
张国军.建筑科学与工程学报, 2019, 36(5), 119.
13 Ye S.Journal of Yancheng Institute of Technology(Natural Science Edition), 2019, 32(2), 74(in Chinese).
叶生.盐城工学院学报(自然科学版), 2019, 32(2), 74.
14 Wang Z H, Shen S Y, Cui Y Q, et al.Journal of Harbin Institute of Technology, 2020, 52(8), 112(in Chinese).
王作虎, 申书洋, 崔宇强, 等. 哈尔滨工业大学学报, 2020, 52(8), 112.
15 Fu L, Zheng J L, Wang D F. Journal of Vibration and Shock, 2021, 40(13), 299(in Chinese).
付李, 郑家乐, 王登峰. 振动与冲击, 2021, 40(13), 299.
16 Jin L, Yu W X, Du X L, et al. International Journal of Impact Enginee-ring, 2019, 125, 1.
17 Jin L, Yang W X, Yu W X, et al. Engineering Mechanics, 2020, 37(3), 56(in Chinese).
金浏, 杨旺贤, 余文轩, 等. 工程力学, 2020, 37(3), 56.
18 Huang H Y, Zhang Z M.Conrete, 2004(3), 8(in Chinese).
黄海燕, 张子明. 混凝土, 2004(3), 8.
19 Bažant Z P.Journal of Engineering Mechanics, 1984, 110(4), 518.
20 Carpinteri A, Ferro G. Materials and Structures, 1994, 174(27), 563.
21 Zhou M J, Wang N N, Zhao X Y, et al.Concrete, 2009(4), 104(in Chinese).
周明杰, 王娜娜, 赵晓艳, 等. 混凝土, 2009(4), 104.
22 Li W B. The comparison of foaming agent and the research of foam stability modification. Master's Thesis, Dalian University of Technology, China, 2009 (in Chinese).
李文博. 泡沫混凝土发泡剂性能及其泡沫稳定改性研究. 硕士学位论文, 大连理工大学, 2009.
23 Gai G Q, Xiao L G, Yin W H.Journal of Jilin Architectural and Civil Engineering Institute, 1999(2), 11(in Chinese).
盖广清, 肖力光, 殷维河. 吉林建筑工程学院学报, 1999(2), 11.
24 Zhou S E, Lu Z Y, Yan Y.Materials Reports, 2009, 23(6), 69(in Chinese).
周顺鄂,卢忠远,严云. 材料导报, 2009, 23(6), 69.
25 Qiao H H, Lu Z Y, Yan Y, et al. China Powder Science and Technology, 2008, 14(6), 38(in Chinese).
乔欢欢, 卢忠远, 严云, 等. 中国粉体技术, 2008, 14(6), 38.
26 Yang X F, Zhang Z Q, Yang J L, et al.Acta Armamentarii, 2017, 38(S1), 155(in Chinese).
杨先锋, 张志强, 杨嘉陵, 等. 兵工学报, 2017, 38(S1), 155.
27 Zhou H Y, Zhang X J, Wang X J, et al.Composite Structures, 2020, 239, 112025.
28 He S M. Study on the constitutive relationship of foam concrete.Master's Thesis, Jilin University, China, 2014 (in Chinese).
何书明. 泡沫混凝土本构关系的研究. 硕士学位论文, 吉林建筑大学, 2014.
29 Li H N, Liu P F, Li C, et al. Construction and Building Materials, 2019, 213, 20.
30 Su B Y, Zhou Z W, Zhang J J, et al.Rare Metal Materials and Enginee-ring, 2016, 45(3), 671(in Chinese).
苏步云, 周志伟, 张建军, 等. 稀有金属材料与工程, 2016, 45(3), 671.
31 Wang X J, Liu L, Jia K C, et al.Journal of Building Materials, 2021, 24(1), 207(in Chinese).
王小娟, 刘路, 贾昆程, 等. 建筑材料学报, 2021, 24(1), 207.
32 Liu H. Energy absorption and explosion proof ability of aluminum foam. Ph.D. Thesis, Northeastern University,China, 2014 (in Chinese).
刘欢. 泡沫铝材料的吸能与防爆特性研究. 博士学位论文, 东北大学, 2014.
33 Zhou H Y, Jia K C, Wang X J, et al.Acta Materiae Compositae Sinica, 2020, 37(8), 2005(in Chinese).
周宏元, 贾昆程, 王小娟, 等. 复合材料学报, 2020, 37(8), 2005.
34 Tan P J, Harrigan J, Reid S R.Materials Science and Technology, 2002, 18, 480.
35 Li G L, Guo W G, Zhao R, et al.Journal of Materials Science & Engineering, 2012, 30(3), 428(in Chinese).
李广良, 郭伟国, 赵融, 等. 材料科学与工程学报, 2012, 30(3), 428.
36 Su B Y. Mechanical properties and elastoplastic damage constitutive model for foamed concrete. Ph.D. Thesis, Taiyuan University of Technology,China, 2017 (in Chinese).
苏步云. 泡沫混凝土力学性能及其弹塑性损伤本构研究. 博士学位论文, 太原理工大学, 2017.
37 Avalle M, Belingardi G, Ibba A.International Journal of Impact Enginee-ring, 2007, 34(1), 3.
38 Wang Z H, Lin J, Zhao L M.Transactions of Nonferrous Metals Society of China, 2011, 21(3), 449.
39 Bažant Z P, Planas J.Fracture and size effect in concrete and other quasibrittle materials, CRC Press, Boca Raton, 1998, pp.13.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[4] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[5] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[6] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[7] 刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
[8] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[9] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[10] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[11] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[12] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[13] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[14] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[15] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed