Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16042-16049    https://doi.org/10.11896/cldb.20040142
  无机非金属及其复合材料 |
盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究
路承功1, 魏智强2, 乔宏霞1,3, 曹辉1, 乔国斌1
1 兰州理工大学土木工程学院,兰州 730050;
2 兰州理工大学理学院,兰州 730050;
3 兰州理工大学,西部土木工程防灾减灾教育部工程研究中心,兰州 730050
Research on Damage Deterioration and Size Effect of Reinforced Concrete in Saline Soil Powered-on Environment
LU Chenggong1, WEI Zhiqiang2, QIAO Hongxia1,3, CAO Hui1, QIAO Guobin1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
3 Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对西部盐渍土地区混凝土结构在电流与腐蚀离子综合作用下耐久性突出问题,设计了室内恒电流通电加速试验,同时考虑试件尺寸效应的影响,将100 mm×100 mm×100 mm立方体及100 mm×100 mm×400 mm棱柱体试件置于盐渍土中进行耐久性试验,采用电化学方法进行腐蚀监测,利用裂缝观测仪密切关注裂缝开展情况,腐蚀结束后分别对混凝土及钢筋进行电镜扫描。研究结果表明:在盐渍土通电加速环境下,钢筋混凝土经历了失钝、自由膨胀、应力增长、裂缝开展四个阶段。钢筋表面有层片状、团簇状、颗粒状的疏松结构生成,锈蚀产物呈黑色、褐色,混凝土内有针杆状、冰溜状、薯条状晶体生长,裂缝沿钢筋周围纵向开展、分布。立方体试件腐蚀电位、腐蚀电流密度、裂缝开展宽度等指标均显著高于棱柱体试件,且立方体试件实际腐蚀效率是棱柱体试件的1.5~1.6倍。钢筋混凝土试件尺寸效应显著,强度等级越高,尺寸效应越明显,且对于普通强度等级钢筋混凝土,尺寸效应对其耐久性影响程度高于强度等级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
路承功
魏智强
乔宏霞
曹辉
乔国斌
关键词:  钢筋混凝土  盐渍土  通电加速  尺寸效应  损伤劣化    
Abstract: Aiming at the prominent durability problem of concrete structures in western saline soil area under the combined action of current and corrosion ion, the constant current electrified acceleration test was designed. At the same time, considering the influence of specimen size, the 100 mm×100 mm×100 mm cube and 100 mm×100 mm×400 mm prismatic specimens were placed in saline soil for durability test. Electrochemical method was adopted for corrosion monitoring. Crack observation instrument was used to pay close attention to the development of cracks. After the end of corrosion, the concrete and steel were respectively scanned by electron microscopy. The results show that, under the condition of saline soil electrified acceleration, the reinforced concrete has gone through four stages:dulling, free expansion, stress growth and crack development. There are laminar, cluster and granular loose structures on the surface of the steel bar, and the corrosion products are black and brown. There are needle rod shaped, ice like and chip shaped crystals in the concrete, and the cracks are developed and distributed along the longitudinal direction around the steel bar. The corrosion potential, corrosion current density and crack development width of cube specimens are significantly higher than those of prism specimens, and the actual corrosion efficiency of cube specimens is 1.5—1.6 times of prism specimens. The size effect of reinforced concrete specimens is significant, the higher the strength level, the more obvious the size effect. The effect of size effect on its durability is higher than the strength level for the ordinary strength grade reinforced concrete.
Key words:  reinforced concrete    saline soil    electrified acceleration    size effect    damage degradation
发布日期:  2021-09-07
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51168031;51868044)
通讯作者:  qiaohx7706@163.com   
作者简介:  路承功,兰州理工大学博士研究生,主要从事混凝土耐久性及寿命预测方面的研究。
乔宏霞,兰州理工大学教授,博士研究生导师,中国科学院青海盐湖研究所博士后,主要从事混凝土耐久性及寿命预测方面的研究。主持国家自然基金3项,完成甘肃省建设科技攻关项目3项,兰州理工大学红柳优秀青年教师培养计划1项,中国科学院重点实验室开放基金1项,大型企业技术开发项目多项,并参与多项省部级课题及国家重点基础研究发展计划(973),SCI/EI检索数30余篇。
引用本文:    
路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
LU Chenggong, WEI Zhiqiang, QIAO Hongxia, CAO Hui, QIAO Guobin. Research on Damage Deterioration and Size Effect of Reinforced Concrete in Saline Soil Powered-on Environment. Materials Reports, 2021, 35(16): 16042-16049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040142  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16042
1 Lin D Y, Yi Bo, Chen Y X, et al . Materials Reports A: Review Papers, 2014,28(6), 137(in Chinese).
林德源,易博,陈云翔,等. 材料导报:综述篇,2014,28(6),137.
2 Wang C, Ge G H, Hou J G, et al. Journal of Wuhan University (Engineering Edition), 2017,50(3), 447(in Chinese).
王成,葛广华,侯建国,等. 武汉大学学报(工学版),2017,50(3),447.
3 Peng L Z L, Mark G S. Journal of Civil Engineering, 2014,47 (10), 61(in Chinese).
彭里政俐,Mark G Stewart. 土木工程学报,2014,47(10),61.
4 Zhang J X, Yi B, Lin D Y, et al. Journal of Building Materials, 2016,19(2), 390(in Chinese).
张俊喜,易博,林德源,等. 建筑材料学报,2016,19(2),390.
5 Zhang Y S, Huang R, Yang Y G, et al. Journal of Building Materials, 2017,20(3), 449(in Chinese).
张云升,黄冉,杨永敢,等. 建筑材料学报,2017,20(3),449.
6 Sun X K. Journal of Railway Engineering, 2013,30(2), 104(in Chinese).
孙向琨.铁道工程学报,2013,30(2),104.
7 Liu Z Q, Pei M, Liu H, et al. Journal of Building Materials, 2020,23 (4), 787(in Chinese).
刘赞群,裴敏,刘厚,等. 建筑材料学报,2020,23(4),787.
8 Wang J H, Cao L J, Xu G Q, et al. Spectroscopy and Spectral Analysis, 2019,39(6), 1724(in Chinese).
汪金花,曹兰杰,徐国强,等.光谱学与光谱分析,2019,39(6),1724.
9 Qiao H X, Shi Y Y, Chen D S, et al. Journal of Chongqing University, 2015,38(6), 129(in Chinese).
乔宏霞,师莹莹,陈丁山,等.重庆大学学报,2015,38(6),129.
10 Liu S W, Zhao J C, Zhang J W, et al. Journal of Railway Science, 2019,41(1), 138(in Chinese).
刘生纬,赵建昌,张家玮,等.铁道学报,2019,41(1),138.
11 Stawiski B,Kania T. Materials,2019,12(16),2519.
12 Lian J J, Zhang J, Wu M D, et al. Journal of Tianjin University (Natural Science and Engineering Technology Edition), 2016,49(4), 333(in Chinese).
练继建,张杰,吴慕丹,等.天津大学学报(自然科学与工程技术版),2016,49(4),333.
13 Yang L F, Zhou M, Chen Z , et al. Journal of Civil Engineering,2016,49(12),65(in Chinese).
杨绿峰,周明,陈正,等.土木工程学报,2016,49(12),65.
14 Zhang J H, Liu Y H, Shi Z M. Journal of Building Materials, 2018,21 (2), 299(in Chinese).
张菊辉,刘颖慧,时哲敏.建筑材料学报,2018,21(2),299.
15 Zhang Q, Guo L. Journal of Hunan University (Natural Science Edition), 2017,44(5), 44(in Chinese).
张芹,郭力.湖南大学学报(自然科学版),2017,44(5),44.
16 Hao T Y , Su Y Q , Li Y , et al. IOP Conference Series Materials Science and Engineering, 2019, 479(1),012086.
17 Zheng F, Shi G Y, Dong B Q, et al. Journal of Silicate, 2018,46(8),1081(in Chinese).
郑帆,史桂昀,董必钦,等.硅酸盐学报,2018,46(8),1081.
18 Chen M C, Wang K, Wu Q S, et al. Journal of Railway, 2013,35 (9), 112(in Chinese).
陈梦成,王凯,吴泉水,等.铁道学报,2013,35(9),112.
19 Xu G, Zhang R, Peng Y Z, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017,45 (3), 127(in Chinese).
徐港,张瑞,彭艳周,等.华中科技大学学报(自然科学版),2017,45(3),127.
20 Tang K K. Cement & Concrete Research, 2017,100 (10), 445.
21 Chen Z P , Koleva D , Koenders E , et al. Material Research Society, 2015, 1768, 21.
22 Tang F J, Lin Z B, Chen G D, et al. Construction and Building Mate-rials, 2014,70(2),104.
[1] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[2] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[3] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[4] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[5] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[6] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[7] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[8] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[9] 张立力, 华苏东, 诸华军, 顾增欢, 谷重, 赵益河. 高镁镍渣-磷石膏基胶凝材料固化和改良盐渍土的性能[J]. 材料导报, 2020, 34(9): 9034-9040.
[10] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[11] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[12] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[13] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[14] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[15] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed