Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24075-24080    https://doi.org/10.11896/cldb.20120229
  无机非金属及其复合材料 |
考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测
鞠学莉1,2, 吴林键1,2, 刘明维1,2, 张洪1,2, 李婷婷1,2
1 重庆交通大学国家内河航道整治工程技术研究中心,重庆 400074
2 重庆交通大学河海学院,重庆 400074
Service Life Prediction for Reinforced Concrete Wharf Considering the Influence of Chloride Erosion Dimension
JU Xueli1,2, WU Linjian1,2, LIU Mingwei1,2, ZHANG Hong1,2, LI Tingting1,2
1 National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing 400074, China
2 School of River & Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 4856KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合理评估和预测海洋环境下考虑氯盐侵蚀的钢筋混凝土(RC)码头结构服役寿命,对港口正常、安全运营意义重大。根据混凝土多相复合材料的细观组成结构,建立考虑粗骨料为凸多边形的混凝土细观数值模型。基于氯离子侵蚀混凝土的有限元数值模拟仿真方法,评估得到混凝土细观模型中氯离子一维、二维侵蚀的浓度分布,并建立氯离子一维、二维侵蚀模型。以沿海某RC高桩码头工程中方桩构件为例,根据建立的氯离子侵蚀模型并结合钢筋锈蚀速率模型,预测RC方桩构件的服役寿命。结果表明:在氯离子二维侵蚀下RC方桩的服役寿命预测值较一维侵蚀提前了约34%,RC结构的服役寿命大幅缩短。建议在RC码头耐久性设计过程中充分考虑氯离子侵蚀维度对结构物服役寿命的影响,以保障RC码头结构的运营安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠学莉
吴林键
刘明维
张洪
李婷婷
关键词:  钢筋混凝土  码头  氯离子  侵蚀维度  服役寿命    
Abstract: Reasonable assessment and prediction on the durability and service life of reinforced concrete (RC) wharf structures exposed to marine environment considering the influence of chlorine erosion is of great significance to the normal and safe operation of ports. For this paper's study, taking into account the meso-scopic structure of concrete multi-phases composites, the meso-scopic numerical models of concrete with convex polygon coarse aggregates were established. Based on the numerical simulation using finite element method for chloride erosion in concrete, the chloride concentration profiles due to one-dimensional and two-dimensional chloride erosion in meso-scopic numerical model of concrete were determined. The one-dimensional and two-dimensional chloride erosion models were built. Taking the square pile in a certain RC high-piled wharf as an example, the service life of square pile component was predicted and obtained by using the established one-dimensional and two-dimensional chloride erosion models and uniting the corrosion rate model of reinforcement. Results indicated that the prediction service life of RC square pile under two-dimensional chloride erosion was about 34% earlier than that of one-dimensional chloride erosion, the service life of RC structures greatly shortening. To ensure the long-term operation safety of RC wharf structure, the influence of chloride erosion dimension on the service life of RC wharf should be fully considered during the durability design.
Key words:  reinforced concrete (RC)    wharf    chloride    erosion dimension    service life
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TU375  
基金资助: 重庆市自然科学基金博士后科学基金(cstc2019jcyj-bshX0063);中国博士后科学基金(2019M653824XB);重庆交通大学研究生科研创新基金(CYS21350)
通讯作者:  wljabgf@126.com   
作者简介:  鞠学莉,2019年毕业于重庆交通大学,获得学士学位。现于重庆交通大学攻读博士学位,主要从事钢筋混凝土耐久性等方面的研究。吴林键,重庆交通大学副教授。2019年毕业于天津大学,获得博士学位。现于重庆交通大学工作,主要从事混凝土结构耐久性评估和寿命设计的研究。
引用本文:    
鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
JU Xueli, WU Linjian, LIU Mingwei, ZHANG Hong, LI Tingting. Service Life Prediction for Reinforced Concrete Wharf Considering the Influence of Chloride Erosion Dimension. Materials Reports, 2021, 35(24): 24075-24080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120229  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24075
1 Wu Z Y, Yu H F, Ma H Y, et al. Materials Reports B: Research Papers, 2019, 33(1), 264(in Chinese).
吴彰钰, 余红发, 麻海燕, 等. 材料导报:研究篇, 2019, 33(1), 264.
2 Ju X L, Wu L J, Liu M W, et al. In: Proceedings of the Fourteenth (2020) ISOPE Pacific-Asia Offshore Mechanics Symposium. Dalian, China, 2020, pp.142.
3 Yang C Y, Li L, Li J P. Construction and Building Materials, 2020, 263, 120172.
4 Zhang J H, Wang W, Guan Z G. Materials Reports,2016, 30 (S2), 401(in Chinese).
张菊辉, 王伟, 管仲国. 材料导报, 2016, 30 (S2), 401.
5 Guan B W, Yang T, Yu D M, et al. Materials Reports, 2016, 30(20), 152(in Chinese).
关博文, 杨涛, 於德美, 等. 材料导报, 2016, 30(20), 152.
6 Wang H. Experimental study and probability analysis on the chloride ion diffusion of RC bridge. Master's Thesis, Changsha University of Science & Technology, China, 2013(in Chinese).
王华. RC桥梁混凝土中氯离子扩散试验研究及概率分析. 硕士学位论文, 长沙理工大学, 2013.
7 Zhou M. Quantitative analysis and design for durability of concrete structures under chloride environment. Ph.D. Thesis, Guangxi University, China, 2016(in Chinese).
周明. 氯盐环境下混凝土耐久性分析与定量设计. 博士学位论文, 广西大学, 2016.
8 Yu H F, Sun W, Ma H Y. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(2), 276(in Chinese).
余红发, 孙伟, 麻海燕. 南京航空航天大学学报,2009,41(2),276.
9 Bastidas-Arteaga E, Chateauneuf A, Sánchez-Silva M, et al. Enginee-ring Structures, 2011, 33(3), 720.
10 Jin L, Zhang R B, Du X L, et al. Engineering Failure Analysis, 2015, 52, 129.
11 Wang X Y, Zhang L N. Advances in Materials Science and Engineering, 2016, 2016, 1.
12 Shi G. Journal of Xiamen University of Technology, 2014, 22 (1), 80(in Chinese).
施钢. 厦门理工学院学报, 2014, 22 (1), 80.
13 Hu S W, Peng J X, Zhang J R. Journal of Railway Science and Enginee-ring, 2017, 14 (12), 2570(in Chinese).
胡守旺, 彭建新, 张建仁. 铁道科学与工程学报, 2017, 14 (12), 2570.
14 Alqam M H. Arabian Journal for Science and Engineering, 2014, 39 (5), 3633.
15 Yang L P, Chen Z, Gao Q, et al. Acta Mechanica,2013,224(1),123.
16 Wang Y. Test and boundary element analysis for chloride diffusion in concrete. Master's Thesis, Guangxi University, China, 2008(in Chinese).
王燚. 混凝土中氯离子扩散实验及边界元分析. 硕士学位论文,广西大学, 2008.
17 Bitaraf M, Mohammadi S. Construction and Building Materials, 2008, 22 (4), 546.
18 Yao L, Li X L, Zhang L, et al. Advances in Materials Science and Engineering, 2016, 2016, 1.
19 Chen M C, Yuan S Y. Railway Engneering, 2016, (9), 134(in Chinese).
陈梦成, 袁素叶. 铁道建筑, 2016(9), 134.
20 Chen M C, Yuan S Y. Journal of the China Railway Society, 2017, 39 (10), 142(in Chinese).
陈梦成, 袁素叶. 铁道学报, 2017, 39 (10), 142.
21 Xu J, Li F M. Construction and Building Materials, 2017, 130, 11.
22 Wang Y Z, Wu L J, Wang Y C, et al. Construction and Building Mate-rials, 2018, 185, 230.
23 Wang D. Mesoscopic numerical study on chloride diffusion in concrete considering aggregate as stochastic convex polygon. Master's Thesis, Tianjin University, China, 2018(in Chinese).
王铎. 考虑粗骨料为随机凸多边形的混凝土氯离子扩散细观数值模拟. 硕士学位论文, 天津大学, 2018.
24 Wang Y Z, Wu L J, Wang Y C, et al. Construction and Building Mate-rials, 2018, 159, 297.
25 Wu L J, Wang Y Z, Wang Y C, et al. Construction and Building Mate-rials, 2020, 243, 118213.
26 Wu L J, Ju X L, Liu M W, et al. Composites Part B, Engineering, 2020, 199, 108236.
27 Yu H F, Sun W, Yan L H, et al. Journal of the Chinese Ceramic Society, 2002(6), 686(in Chinese).
余红发, 孙伟, 鄢良慧, 等. 硅酸盐学报, 2002(6), 686.
28 Chen C, Yang L F, Yu B. Materials Reports, 2019, 33 (S2), 321(in Chinese).
陈昌, 杨绿峰, 余波. 材料导报, 2019, 33 (S2), 321.
29 Jin W L, Yuan Y S, Wei J, et al. Durability theory and design method of concrete structures in chlorine environment, Science Press, China, 2011(in Chinese).
金伟良, 袁迎曙, 卫军, 等. 氯盐环境下混凝土结构耐久性理论与设计方法, 科学出版社, 2011.
30 Xu Q H, Shi D D, Shao W. Service life prediction of RC square piles based on time-varying probability analysis. Construction and Building Materials, 2019, 227, 116824.
31 CCES 01-2004 Guide to durability design and construction of reinforced structures, China Architecture & Building Press, China, 2004(in Chinese).
CCES 01-2004混凝土结构耐久性设计与施工指南, 中国建筑工业出版社, 2004.
32 Wang Q L, Niu D T, Lin Z S, et al. Standard for durability assessment of concrete structures, China Architecture & Building Press, China, 2007(in Chinese).
王庆霖, 牛荻涛, 林志伸, 等. 混凝土结构耐久性评定标准, 中国建筑工业出版社, 2007.
33 Vu K A T, Stewart M G. Structural Safety, 2000, 22 (4), 313.
[1] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[2] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[3] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[4] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[5] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[6] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[7] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[8] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[9] 杨林, 张云升, Carmen Andrade, 张春晓. 非饱和砂浆氯离子传输与pH分布相关性研究[J]. 材料导报, 2021, 35(18): 18064-18068.
[10] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[11] 张跃, 申林方, 王志良, 董武书. 考虑温度时变效应氯离子侵蚀混凝土的格子Boltzmann数值模型[J]. 材料导报, 2021, 35(16): 16035-16041.
[12] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[13] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[14] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[15] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed