Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2039-2045    https://doi.org/10.11896/cldb.19110229
  无机非金属及其复合材料 |
水泥基胶凝材料氧化物含量与氯离子结合量的定量关系
郭丽萍1,2,†, 薛晓丽1,†, 曹园章1, 费香鹏1, 丁聪1
1 东南大学材料科学与工程学院,南京 211189;
2 江苏省土木工程材料重点实验室,江苏省先进土木工程材料协同创新中心,南京 211189
Quantitative Relationships Between Oxide Contents of Cementitious Materials and Chloride Ion Binding Amount
GUO Liping1,2,†, XUE Xiaoli1,†, CAO Yuanzhang1, FEI Xiangpeng1, DING Cong1
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
2 Collaborative Innovation Center for Sustainable Civil Engineering Materials & Structures, Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 6056KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为揭示氯盐溶液及存在硫酸盐复合盐溶液中氯离子对水泥基材料的侵蚀特性,合理选用氯盐环境下水泥基材料组分,减小海洋环境和盐湖卤水对混凝土造成的氯离子侵蚀问题,本工作通过添加矿物掺合料(矿渣和粉煤灰)改变主要氧化物含量,研究水泥基材料氧化物含量与氯离子结合量的关系。采用等温吸附法测试样品的氯离子结合量,采用X射线衍射仪(XRD)和同步热分析仪(TG-DSC)表征侵蚀产物。实验结果表明,在氯盐溶液侵蚀下,水泥基材料的氯离子结合量与其Al2O3、SiO2含量成正比,与CaO含量成反比。在硫酸盐存在的复合盐溶液侵蚀下,硫酸盐浓度较低(3.5% NaCl+0.5% Na2SO4)时,氯离子结合量略有下降,测试结果表明Friedel盐的生成量不会因硫酸根离子的引入而降低,此时两种离子没有明显的竞争关系;当硫酸盐浓度提高到5% Na2SO4时,氯离子结合量下降显著,实验结果表明Friedel盐的生成量降低,两种离子间竞争关系显著,但不影响氧化物含量与氯离子结合量之间的相关性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽萍
薛晓丽
曹园章
费香鹏
丁聪
关键词:  氧化物含量  氯离子  硫酸根离子  水泥基材料    
Abstract: In order to reveal the corrosion characteristics and mechanism of cementitious materials in the chloride salt solution and presence of sulfate composite salt solution, meanwhile select the cementitious material components rationally in the chloride salt environment, to reduce the chloride erosion caused by the chloride salt. In this paper, the main oxide contents were changed by adding mineral admixtures (slag and fly ash) to study the relationship between the oxide contents of cementitious materials and the chloride ion binding amount. The chloride ion binding amount was tested by plasma adsorption method. X-ray diffractometer (XRD) and synchronous thermal analyzer (TG-DSC) were used to characterize the corrosion products. The experimental results show that, the chloride ion binding amount of cementitious materials is proportional to the content of Al2O3 and SiO2 under the corrosion of chloride salt solution, which is inversely related to the CaO content. Under the attack of complex salt solution, when the sulfate concentration is lower (3.5% NaCl+ 0.5% Na2SO4), there is no obvious competition between the two, the amount of Friedel’s salt is not reduced by the introduction of sulfate ions; when the sulfate concentration is increased to 5% Na2SO4, the competition between the two is significant, but does not affect the correlation between oxide contents and chloride ion binding amount.
Key words:  oxide content    chloride ion    sulfate ion    cementitious materials
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51778133) ;国家重点研发计划资助项目(973计划)(2015CB655102)
通讯作者:  guoliping691@163.com   
作者简介:  郭丽萍,博士,教授,博导。主要研究方向为生态型高延性水泥基复合材料、混凝土耐久性、固废物再生自清洁无机涂层。主持在研和完成国家自然科学基金面上项目2项、青年基金1项,主持完成国家重点研发计划资助项目(973计划)子题2项等。
薛晓丽,东南大学硕士研究生,主要从事混凝土耐久性的研究,参与国家973项目“严酷环境下混凝土材料与结构长寿命的基础研究”(项目编号:2015CB655102)。
引用本文:    
郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
GUO Liping, XUE Xiaoli, CAO Yuanzhang, FEI Xiangpeng, DING Cong. Quantitative Relationships Between Oxide Contents of Cementitious Materials and Chloride Ion Binding Amount. Materials Reports, 2021, 35(2): 2039-2045.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110229  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2039
1 Koleva D A, Hu J, Fraaij A L A, et al. Cement and Concrete Research, 2007, 37(4), 604.
2 Shi X, Xie N, Fortune K, et al. Construction and Building Materials, 2012, 30, 125.
3 Tang L P, Nilsson L O. Cement and Concrete Research, 1993, 23(2), 247.
4 Ann K Y, Song H. Corrosion Science, 2007, 49(11), 4113.
5 Angst U, Elsener B, Larsen C K, et al. Cement and Concrete Research, 2009, 39(12), 1122.
6 Cao Y Z, Guo L P, Zang W J, et al. Materials Resports A: Review Papers, 2018, 32 (12), 4142(in Chinese).
曹园章,郭丽萍,臧文洁,等. 材料导报:综述篇, 2018, 32(12), 4142.
7 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39(4), 340.
8 Wang X G, Shi C J, He F Q, et al. Journal of the Chinese Ceramic Society, 2013, 41(2), 187(in Chinese).
王小刚,史才军,何富强,等. 硅酸盐学报, 2013, 41(2), 187.
9 Florea M V A, Brouwers H J H. Cement and Concrete Research, 2012, 42(2), 282.
10 Gou M F, Guan X M, Sun Q. Journal of Building Materials, 2015, 18(3), 363(in Chinese).
勾密峰,管学茂,孙倩. 建筑材料学报, 2015, 18(3), 363.
11 Suryavanshi A K, Scantlebury J D, Lyon S B. Cement and Concrete Research, 1995, 25(3), 581.
12 Ipavec A, Vuk T, Gabrovšek R, et al. Cement and Concrete Research, 2013, 48, 74.
13 Zibara H, Hooton R D, Thomas M D A, et al. Cement and Concrete Research, 2008, 38(3), 422.
14 Yi C, Ma H, Zhu H, et al. Construction and Building Materials, 2018, 167, 649.
15 Yu H F, Sun W, He Q Y. Concrete, 2007(2),1(in Chinese).
余红发, 孙伟, 何庆勇. 混凝土, 2007(2), 14.
16 Jin Z Q. Durability and service life prediction of concrete exposed to harsh environment in West of China. Ph.D. Thesis, Southeast University, China, 2006(in Chinese).
金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测. 博士学位论文, 东南大学, 2006.
17 Yuan Q, Shi C, De Schutter G, et al. Construction and Building Mate-rials, 2009, 23(1), 1.
18 Liu Y J. Destruction and eveluation of cement-based materials under sulfate-chloride attack. Master's Thesis, Southeast University, China, 2016(in Chinese).
刘玉静. 水泥基材料在硫酸盐—氯盐侵蚀下的破坏与评价. 硕士学位论文, 东南大学, 2016.
19 Ukpata J O, Basheer P A M, Black L. Cement and Concrete Research, 2019, 123, 105794
20 Cao Y Z, Guo L P, Chen B. Construction and Building Materials, 2019, 197, 398.
21 Ukpata J O, Basheer P A M, Black L. Advances in Cement Research, 2018, 30(8), 371.
22 Zibara H, Hooton R D, Thomas M D A, et al. Cement and Concrete Research, 2008, 38(3), 422.
23 Gou M F, Guan X M. Materials Resports A: Review Papers, 2010, 24(6), 124(in Chinese).
勾密峰, 管学茂. 材料导报:综述篇, 2010, 24(6), 124.
24 Florea M V A, Brouwers H J H. Cement and Concrete Research, 2012, 42(2), 282.
[1] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[2] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[3] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[4] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[5] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[6] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[7] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[8] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[9] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[10] 刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
[11] 石亮, 谢德擎, 王学明, 袁俊, 穆松, 魏鹏, 朱梦伟. 抗侵蚀抑制剂对混凝土吸水性能及抗盐结晶性能的影响[J]. 材料导报, 2020, 34(14): 14093-14098.
[12] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[13] 陈昌, 杨绿峰, 余波. 海洋潮汐区混凝土表面氯离子浓度的时变规律及多因素模型[J]. 材料导报, 2019, 33(Z2): 321-326.
[14] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[15] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed