Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23042-23050    https://doi.org/10.11896/cldb.19070105
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
废旧纤维在水泥基材料中的应用研究进展
张少辉1, 王艳2,3, 牛荻涛1,3
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学材料科学与工程学院,西安 710055
3 西部绿色建筑国家重点实验室,西安 710055
Research Progress of the Application of Waste Fiber in Cement-based Materials
ZHANG Shaohui1, WANG Yan2,3, NIU Ditao1,3
1 College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 10478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维/树脂复合材料具有强度高、质量轻、耐腐蚀等优异特性,被广泛地应用于现代工业生产中,它们的设计使用寿命大约为20~25年,随着其设计使用年限的到达,将会有大量的纤维/树脂复合材料退役。如仅在风力发电领域,到2050年纤维/树脂复合材料总废弃量将达到4 340万t。废弃纤维/树脂复合材料将会给环境带来巨大的影响,如何回收利用大量的纤维/树脂复合材料废弃物是人们迫切需要解决的问题。
目前回收纤维/树脂复合材料的方法主要有机械回收、热处理回收及化学回收三大类。机械回收是指使用破碎机将纤维/树脂复合材料粉碎成不同粒径的碎屑或碎片以备回收使用,回收过程简单、高效、无污染物排放,但是这种方法会破坏纤维的原始形貌,并且纤维表面附着的树脂并没有除去,影响回收纤维的再次利用。热处理回收方法是利用高温或氧化条件将纤维表面的树脂氧化或热解,以达到去除树脂、回收纤维的目的。这种方法不会降低纤维自身的性能,且回收的纤维与原始纤维性能接近,但是热处理过程需要耗费大量能源,且树脂热分解过程会产生有毒、有害气体。化学回收方法包括超临界技术和化学试剂法,其中超临界技术需要昂贵的特殊仪器且工艺复杂,目前只适用于实验室小规模使用;化学试剂法是利用化学试剂的强氧化性弱化纤维与树脂之间的黏结性能以除去树脂,该法工艺简单、效率高。
将纤维复合材料废弃物经过适当处理后用于增强水泥基材料,不仅可以实现废弃资源再利用,重要的是还可以提高水泥基材料的性能。回收纤维对水泥基材料性能的增强机理主要表现在:(1)抑制水泥凝结硬化过程中初始微裂纹的产生;(2)控制硬化水泥基材料在荷载作用下微裂纹的扩展及合并;(3)破坏过程中吸收能量,提高水泥基材料的韧性。
本文基于国内外回收纤维的研究现状,对各种回收方法的优缺点进行了阐述,重点介绍了回收钢纤维、回收碳纤维、回收塑料纤维及回收其他类型纤维对水泥基材料性能的影响,并对它们的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张少辉
王艳
牛荻涛
关键词:  纤维复合材料  废旧纤维  回收方法  水泥基材料    
Abstract: Fiber reinforced composites (FRC) are widely used in modern industrial production due to their high strength, light weight and corrosion resistance. Their design service life is about 20—25 years. With the arrival of their design service life, a substantial amount of FRC will be decommissioned.
Only in the field of wind power generation, the total waste of this material will reach 43.4 million t by 2050. Waste FRC have a great impact on the environment. How to dispose those fiber composites waste is an argue problem to be solved.
Currently, there are three methods to recycle FRC: mechanical recycling, thermal processes, and chemical processes. Mechanical recycling refers to the use of a crusher to pulverize the recycled FRC into chips or fragments with different particle sizes. This recovery process is simple, efficient and without pollutant emission, but it will destroy the original morphology of fiber and reduces the performance of recycled fiber. Meanwhile, the resin attached to the fiber surface is not removed, which affects the reuse of the recovered fiber. Thermal processes uses high tempe-rature or oxidizing condition to oxidize or pyrolyze the resin attached to the surface of recycled fiber in order to remove the resin and recover the fiber. This method did not degrade the performance of recycled fiber, and the performance of recycled fiber is close to that of the virgin fiber. However, the thermal process consumes a lot of energy, and this heat treatment will produce toxic and harmful gases. Chemical recovery me-thods include supercritical technology and reagent method. The supercritical technology requires expensive special equipments and complex process, so it’s only suitable for small-scale laboratory use. Reagent method is the use of chemical reagents to weaken the adhesive property between recycled fiber and resin, which has the advantages of simple process and high efficiency. Combined with mechanical recycling, it is very suitable for recycling a large number of wastes FRC materials.
The recycle FRC are properly treated, before its use in cementitious mortar, which can not only realize the reuse of waste resources, but also improve the performance of cement-based materials. The enhancement mechanism of recycled fibers on cement-based materials is mainly as follows: (1) inhibition of the generation of initial microcracks during cement setting and hardening; (2) controlling the propagation and consolidation of micro-cracks in handened cement-based materials under loading; (3) absorbing energy in the process of failure to improve the toughness of cement-based materials.
In this paper, the advantages and disadvantages of various methods are expounded based on the current research status of recycling fibers at home and abroad. At the same time, the effects of recycled steel fiber, recycled carbon fiber, recycled plastic fiber and other types of fiber on the performance of cement-based materials are introduced emphatically, and their development prospects are prospected.
Key words:  fibrous composite    waste fiber    recovery method    cement-based materials
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51878549);国家自然科学基金重大项目(51590914);陕西省自然科学基金面上项目(2020JM-469)
通讯作者:  wangyanwjx@126.com;niuditao@163.com   
作者简介:  张少辉,2017年7月毕业于西安建筑科技大学材料科学与工程学院,获得工学学士学位。现为西安建筑科技大学土木工程学院硕博连读研究生,在牛荻涛教授和王艳副教授指导下进行研究。目前主要的研究方向为纤维混凝土、隧道混凝土衬砌结构耐久性。
王艳,工学博士,现任西安建筑科技大学材料科学与工程学院副教授,硕士研究生导师,西部绿色建筑国家重点实验室成员。主要从事纤维混凝土、混凝土及混凝土结构耐久性的研究。发表学术论文30余篇,其中有11篇被SCI收录。作为项目负责人或主要完成人主持国家自然科学基金2项、多项陕西省自然科学基金等科研项目,参与国家级科研项目4项,参编国家标准1部。
牛荻涛,工学博士,二级教授,博士研究生导师。国家杰出青年科学基金获得者,国家“万人计划”首批百千万工程领军人才,新世纪百千万人才工程国家级人选。教育部创新团队带头人,享受国务院政府特殊津贴。陕西省重点领域顶尖人才,陕西省“三秦学者”创新团队带头人。中国土木工程学会工程质量分会副理事长、中国建筑学会村镇防灾专业委员会副主任委员、ACI中国分会副理事长。主要研究领域有工程结构耐久性及其对策、既有结构可靠性评定与加固、新型材料与新型结构体系等。
引用本文:    
张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
ZHANG Shaohui, WANG Yan, NIU Ditao. Research Progress of the Application of Waste Fiber in Cement-based Materials. Materials Reports, 2020, 34(23): 23042-23050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070105  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23042
1 Wang D W, Wang B M, Duan C B. Synthetic Fiber,2019,48(3),49(in Chinese).
王大伟,王宝铭,段长兵.合成纤维,2019,48(3),49.
2 Sawyer S, Qiao L M, Fried L. Global Wind Report Annual Market Update 2017, Global Wind Energy Council (GWEC). Brussels, Belgium,2018.
3 Liu P, Barlow C Y. Waste Management,2017,62,229.
4 Larsen K. Renewable Energy Focus,2009,9(7),70.
5 Yao W, Li J, Wu K. Cement and Concrete Research,2003,33(1),27.
6 Pimenta S, Pinho S T. Waste Manage,2011,31(2),378.
7 Li Y, Fan Q. Sichuan Building Materials,2018,44(5),243(in Chinese).
李妍,方权.四川建材,2018,44(5),243.
8 Wang Y, Zhang S, Niu D, et al. Construction and Building Materials,2020,234,117390.
9 Jia Lei. Recyclable polyimine resin and its carbon fibre composites. Master’s Thesis, South China University of Technology, China,2018(in Chinese).
贾雷.可循环回收利用的聚亚胺树脂及其碳纤维复合材料.硕士学位论文,华南理工大学,2018.
10 Pickering S J. Composites Part A,2006,37,1206.
11 Scheirs J. Polymer recycling: science, technology and applications, Wiley Press, America,1998.
12 Yazdanbakhsh A, Bank L C, et al. Resources Conservation & Recycling,2018,128,11.
13 Ogi K, Nishikawa T, Okano Y, et al. Advanced Composite Materials,2007,16(2),181.
14 García D, Vegas I, Cacho I. Construction and Building Materials,2014,64,293.
15 Kennerley J R, Kelly R M, Fenwick N J, et al. Composites Part A,1998,29(7),839.
16 Luo G, Chandler D S, et al. Fuel,2017,194,229.
17 Cunliffe A M, Williams P T. Fuel,2003,82(18),2223.
18 Meyer L O, Schulte K. Journal of Composite Materials,2009,43,1121.
19 Holmes M. Reinforced Plastics,2018,62(3),148.
20 Jagadish P R, Khalid M, Li L P, et al. Journal of Cleaner Production,2018,195,1015.
21 Rodrigues G G M, De Paiva J M F, et al. Polymer Degradation and Stability,2019,109,50.
22 Nilakantan G, Nutt S. Reinforced Plastics,2015,59(1),44.
23 Bai Y P, Wang Z, Feng L Q. Materials & Design,2010,31(2),999.
24 Kaelble D H, Dynes P J, Maus L. Journal of Adhesion,1976,8(2),121.
25 Marom G, Broutman L F. Polymer Composites,1981,2(3),132.
26 Zheng Q, Morgan R J. Composite Materials,1993,27(15),1465.
27 Lee M C, Peppas N A. Composite Materials,1993,27(12),1146.
28 Vaddadi P, Nakamura T, Singh R P. Composites Part A,2003,34(8),7190.
29 Wang Y, Zhang S, Li G, et al. Journal of Cleaner Production,2019,228(10),1187.
30 Wang Y, Zhang S, Luo D, et al. Composites Part B, Engineering,2019,173,106853.
31 Sun H, Guo G, et al. Composites Part A,2015,78,10.
32 Jiang J, Deng G, et al. Composites Science and Technology,2017,151(20),243.
33 Ahmadi M, Farzin S, Hassani A, et al. Construction and Building Materials,2017,144(30),392.
34 Frazão C, Díaz B, et al. Cement and Concrete Composites,2019,96,138.
35 Grzymski F, Musiał M, Trapko T. Construction and Building Materials,2019,198(20), 323.
36 El-Sayed T A. Construction and Building Materials,2019,212(10),27.
37 Mastali M, Dalvand A. Construction and Building Materials,2016,125(30),196.
38 Faneca G, Segura I, Torrents J M, et al. Cement and Concrete Compo-sites,2018,92,135.
39 Nguyen H, Carvelli V, Fujii T, et al. Construction and Building Mate-rials,2016,126(15),321.
40 Rangelov M, Nassiri S, Haselbach L, et al. Construction and Building Materials,2016,126(15),875.
41 Mahdi F, Abbas H, Khan A A. Construction and Building Materials,2010,24(1),25.
42 Fraternali F, Farina I, et al. Composites Part B,2013,46,207.
43 De Oliveira L A P, Castro-Gomes J P. Construction and Building Mate-rials,2011,25(4),1712.
44 Borg R P, Baldacchino O, Ferrara L. Construction and Building Mate-rials,2016,108(1),29.
45 Ge Z, Sun R, Zhang K, Gao Z, et al. Construction and Building Mate-rials,2013,44,81.
46 Bui N K, Satomi T, Takahashi H. Waste Management,2018,78,79.
47 Dehghan A, Peterson K, Shvarzman A. Construction and Building Mate-rials,2017,146(15),238.
48 Mastali M, Dalvand A, Sattarifard A R. Journal of Cleaner Production,2016,124(15),312.
49 Barievic' A, Rukavina M J, Pezer M, et al. Cement and Concrete Composites,2018,91,29.
50 Martínez-Barrera G, Del Coz-Díaz J J, et al. Construction and Building Materials,2019,204(20),327.
51 Gupta T, Chaudhary S, Sharma R K. Journal of Cleaner Production,2016,112,702.
52 Chen M, Chen W, et al. Cement and Concrete Composites,2019,98,95.
[1] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[2] 刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
[3] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[4] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[5] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[6] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[7] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[8] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[9] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[10] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[11] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[12] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[13] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[14] 曹园章, 郭丽萍, 臧文洁, 张健, 薛晓丽. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149.
[15] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed