Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2331-2336    https://doi.org/10.11896/cldb.18070194
  无机非金属及其复合材料 |
玻璃纤维增强水泥基材料组成优化设计与性能
张王田1,2, 张云升1,2, 吴志涛1,2, 刘乃东1,2, 袁涤非3
1 东南大学材料科学与工程学院,南京 211189;
2 江苏省土木工程材料重点实验室,南京 211189;
3 南京国电南自电网自动化有限公司,南京 211153
Optimization Design and Properties of Glass Fiber Reinforced Cementitious Composites
ZHANG Wangtian1,2, ZHANG Yunsheng1,2, WU Zhitao1,2, LIU Naidong1,2, YUAN Difei3
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189;
2 Key Laboratory for Civil Engineering Material of Jiangsu, Nanjing 211189;
3 Guodian Nanjing Automation Co., LTD, Nangjing 211153
下载:  全 文 ( PDF ) ( 2636KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为制备高性能和长寿命的玻璃纤维增强水泥基材料(GRC),采用多因素(水胶比、胶砂比、玻璃纤维掺量及矿物掺合料种类)试验设计方法,基于性能设计制备新型GRC,并对其长期力学强度的发展规律进行了研究。同时利用扫描电子显微镜(SEM)、X射线衍射(XRD)仪对新型GRC的水化产物及微结构进行了表征。结果表明:水胶比优选范围是0.30~0.38;胶砂比优选范围是1.0∶0.5~1.0∶1.2;纤维最佳体积掺量是2%;纯硅酸盐水泥系列GRC 28 d后抗折强度下降,粉煤灰和硅灰可以与基体孔隙液中的Ca(OH)2反应,有效降低了Ca(OH)2含量和碱度,改善了玻璃纤维在长期水化中被脆化和腐蚀的情况。因此,采用粉煤灰和硅灰替代部分硅酸盐水泥制备GRC,可使其抗折强度持续增长并保持相对稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张王田
张云升
吴志涛
刘乃东
袁涤非
关键词:  玻璃纤维增强水泥基材料(GRC)  耐碱玻璃纤维  力学性能  组成设计    
Abstract: To obtain the high performance and good durability glass fiber reinforced cementitious composites (GRC), multi factor experimental design method (include: water-binder ratio, binder-sand ratio, content of glass fiber and supplementary cementitious materials) was used in this study to prepare a novel type of GRC based on long-term performance. The development of mechanical properties of GRC was evaluated, meanwhile, the hydration products and micro-structure of GRC was investigated by scanning electronic microscope (SEM) and X-ray powder diffraction (XRD). Test results showed that the optimal parameter of GRC prepared contained: water-binder ratio was 0.30—0.38; binder-sand ratio was 1∶0.5—1∶2; glass fiber content was 2% (volume content). The flexural strength of GRC prepared by plain Portland cement obviously declined after curing 28 d. However, the flexural strength of GRC which used the fly ash or silica fume as supplementary cementitious materials to replace part of Portland cement was improved at a long-term hydration process, because the fly ash and silica fume could be reacted with Ca(OH)2 and effectively reduced the alkalinity of hydrated paste during the hydration process. Thus, the long-term flexural strength of GRC was stable by using fly ash or silica fume to prepare GRC.
Key words:  glass fiber reinforced cementitious composites (GRC)    alkali resistance glass fiber    mechanical properties    compositions design
                    发布日期:  2019-06-19
ZTFLH:  D430.45  
基金资助: 预制舱用GRC材料配合比设计及舱体制造技术研究(SGTYHT/14-JS-188);国家自然科学基金(51678143);中央高校基本科研
业务费专项资金;江苏省研究生科研与实践创新计划项目(SJCX17_0024)
通讯作者:  zhangyunsheng2011@163.com   
作者简介:  张王田,东南大学材料科学与工程学院,硕士,主要从事纤维增强水泥基材料方面的研究。张云升,东南大学材料科学与工程学院,教授,主要从事高与超高性能结构混凝土、工业废渣的处理和资源化、无机铝硅聚合物、结构混凝土的耐久性及寿命预测的研究。
引用本文:    
张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
ZHANG Wangtian, ZHANG Yunsheng, WU Zhitao, LIU Naidong, YUAN Difei. Optimization Design and Properties of Glass Fiber Reinforced Cementitious Composites. Materials Reports, 2019, 33(14): 2331-2336.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070194  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2331
1 Mehta P K, Monteiro P J M. Concrete microstructure, properties and materials, The McGraw-Hill Companies, New York, 2006.
2 Shen R X, Cui Q, Li Q H. New type fibre reinforced cement-based composite, China Building Materials Press, China, 2004(in Chinese).
沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料, 中国建材工业出版社, 2004.
3 Tang M, Yang H. Concrete, 2010(5),76(in Chinese).
唐明, 杨欢. 混凝土, 2010 (5),76.
4 Zhang Y S, Wang X H, Xiao J Q, et al. Journal of Building Materials, 2018, 21(1),143(in Chinese).
张云升, 王晓辉, 肖建强, 等. 建筑材料学报, 2018, 21(1),143.
5 Zhang Y S, Zhang W H, Chen Z Y. Materials Review A:Review Papers, 2017,31(12),1(in Chinese).
张云升, 张文华, 陈振宇. 材料导报:综述篇, 2017,31(12),1.
6 Wang Y M. China GRC, China Building Materials Press, China, 2000(in Chinese).
王燕谋. 中国玻璃纤维增强水泥, 中国建材工业出版社, 2000.
7 Cui Y Z. Glass Fibre, 1991(1), 22(in Chinese).
崔玉忠. 玻璃纤维, 1991(1), 22.
8 Cao J H, Ma Z M, Peng X M. China Concrete and Cement Products, 2001(6), 45(in Chinese).
曹巨辉, 马志明, 彭小明. 混凝土与水泥制品, 2001(6), 45.
9 GRCA. In: Proceedings of the 16th Congress of the GRCA. Turkey, 2011, pp.58.
10 Yang F, Shen R X. China Building Materials Science and Technology, 1997(2), 46(in Chinese).
杨帆, 沈荣熹. 中国建材科技, 1997(2), 46.
11 GRCA. In: Proceedings of the 12th Congress of the GRCA. UK, 2003,pp.3.
12 Xing S N, Wu C Y, Yu H F, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 2072(in Chinese).
邢赛男, 吴成友, 余红发, 等. 硅酸盐通报, 2017, 36(6), 2072.
13 Han J Y, Jiang J F. China Concrete and Cement Products, 2003(6), 33(in Chinese).
韩静云, 蒋家奋. 混凝土与水泥制品, 2003(6), 33.
14 Chen H S, Sun W, Zhang Y M. Industrial Building, 2000, 30(4),54(in Chinese).
陈惠苏, 孙伟, 张亚梅. 工业建筑, 2000, 30(4), 54.
15 Qu S, Qin Y, Huang Z. Shandong Building Materials, 2007(3), 46(in Chinese).
曲爽, 秦岩, 黄征.山东建材, 2007(3), 46.
16 Cui Y L. Studies on durability of GRC and it's mechanism. Master's Thesis, China Building Material Academy, China, 2007(in Chinese).
崔艳玲. GRC的耐久性及其机理研究. 硕士学位论文, 中国建筑材料科学研究总院, 2007.
17 Seneviratne A M G, Short N R, Purnell P, et al. Cement and Concrete Research, 2002, 32 (10),1639.
18 Purnell P, Short N R, Page C L, et al. Cement and Concrete Research, 2000, 30(11),1747.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed