Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 995-999    https://doi.org/10.11896/j.issn.1005-023X.2018.06.026
  材料研究 |
基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能
牛恒茂1, 2, 武文红3, 赵燕茹4, 邢永明2
1 内蒙古建筑职业技术学院建筑工程学院,呼和浩特 010070;
2 内蒙古工业大学理学院,呼和浩特 010051;
3 内蒙古工业大学信息工程学院,呼和浩特 010051;
4 内蒙古工业大学土木工程学院,呼和浩特 010051
Analysis on Bending Properties of PVA Fiber Reinforced Cementitious Composites Based on PVA Fiber-Matrix Interface Property
NIU Hengmao1, 2, WU Wenhong3, ZHAO Yanru4, XING Yongming2
1 College of Construction Engineering, Inner Mongolia Technical College of Construction, Hohhot 010070;
2 College of Science, Inner Mongolia University of Technology, Hohhot 010051;
3 College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051;
4 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051
下载:  全 文 ( PDF ) ( 2161KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整水胶比形成三种配比的聚乙烯醇纤维增强水泥基材料(PFRCC),应用单纤维拔出试验测定了PVA纤维-水泥基体界面参数(化学脱粘能Gd和摩擦粘结强度τ0),发现水胶比增加,界面性能参数Gdτ0均降低;应用三点弯曲试验获得了材料的弯曲韧度和强度,基于PVA纤维-基体界面性能分析,并结合断裂面处PVA纤维宏观影像和微观的扫描电镜(SEM)影像,研究了界面性能对材料弯曲性能的影响。结果表明:低水胶比下由于裂缝处高的应力和界面处纤维与水泥基体高的化学粘结力使大量桥接裂缝的纤维瞬间断裂而失效,导致材料的弯曲韧度和从开裂到弯曲材料强度的增幅较小;中水胶比下裂缝处纤维脱粘后滑动并受摩擦粘结强度作用被严重刮削;高水胶比下裂缝处大量纤维由于界面处低的化学粘结力被拔出,而且拔出的纤维在滑动过程中由于低的摩擦粘结强度被轻微刮削,故桥接裂缝的纤维经历长的滑动,宏观上呈现出高的弯曲挠度特征,因而材料的弯曲韧度和强度的增加幅度显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛恒茂
武文红
赵燕茹
邢永明
关键词:  水泥基材料  单纤维拔出  界面性能  纤维桥接形态  弯曲性能    
Abstract: Three types of polyvinyl alcohol (PVA) fiber reinforced cementitious composites (PFRCC) were produced by adjusting water/binder(w/b) ratio. A single fiber pullout test was utilized to measure interface parameter (chemical debonding energy Gd and frictional bond strength τ0) between PVA fiber and cementitious matrix and found that the values of Gd and τ0 decrease when w/b increases. The values of bending toughness and strength of PFRCC was attained via three-point bending test. The effects of PVA fiber-matrix interface property on bending properties were evaluated based on interface analysis with the aid of the macro-image and SEM micrographs of PVA fibers morphology in the failure crack. The analysis results find out that a large number of fibers of the samples with low w/b in the final failure crack are instantly ruptured due to high strength in the crack and high chemical bond in the fiber-matrix interface, which leads to low bending toughness and low rate of improvement from crack strength to bending strength; the fibers of the samples with moderate w/b in the crack can debond and slide, but the morphology of the fibers are seriously scraped by frictional bond strength. While a large number of fibers of the samples with high w/b in the crack are pulled out due to low chemical bond and the pull-out fibers are slightly scraped during sliding by low frictional bond strength. Therefore, the bridging fibers experience longer slippage and the samples are characterized by high bending deflection on a macro level, which results in high bending toughness value and high rate of strength improvement.
Key words:  cementitious composites    single fiber pullout    interface property    fiber bridging morphology    bending property
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(11362013); 内蒙古自治区人才开发基金项目; 内蒙古自治区高等学校科学研究项目(NJZY330); 内蒙古建筑职业技术学院科研创新团队项目
通讯作者:  赵燕茹,女,1971年生,博士,博士研究生导师,教授,主要从事纤维增强水泥基材料的研究 E-mail:zhaoyanru710523@126.com   
作者简介:  牛恒茂:男,1980年生,博士,副教授,主要从事水泥基材料的细观与高性能测试研究 E-mail:niuhengmao@163.com
引用本文:    
牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
NIU Hengmao, WU Wenhong, ZHAO Yanru, XING Yongming. Analysis on Bending Properties of PVA Fiber Reinforced Cementitious Composites Based on PVA Fiber-Matrix Interface Property. Materials Reports, 2018, 32(6): 995-999.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.026  或          http://www.mater-rep.com/CN/Y2018/V32/I6/995
1 Li V C.高延性纤维增强水泥基复合材料的研究进展及应用[J].硅酸盐学报,2007,35(4):531(in Chinese).
Li V C.Progress and application of engineered cementitious compo-sites[J].Journal of the Chinese Ceramic Society,2007,35(4):531.
2 Ali H, Ali K, Mohammad S, et al. Ductile behavior of high performance fiber reinforced cementitious composite (HPFRCC) frames[J].Construction and Building Materials,2016,115:681.
3 Li V C, Mishra D K, Wu H C. Matrix design for pseudo strain-har-dening fiber reinforced cementitious composites[J].Materials and Structures,1995,28(10):586.
4 Yang E H, Li V C. Fiber-bridging constitutive law of engineered cementitious composites[J].Journal of Advanced Concrete Technology,2008,6(1):181.
5 Randon C, Li V C, Wu C. Measuring and modifying interface pro-perties of PVA Fiber in ECC Matrix[J].Journal of Materials in Civil Engineering,2001,13(6):399.
6 Kanda T, Li V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J].Journal of Materials in Civil Engineering,1998,10(1):5.
7 Li V C, Wang S X, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483.
8 Li V C, Wu C, Wang S X, et al. Interface tailoring for strain-har-dening PVA-ECC[J].ACI Materials Journal,2002,99(5):463.
9 Yang E H, Yang Y Z, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J].ACI Materials Journal,2007,104(6):303.
10 Zhu Yu, Yang Y Z, Gao X J, et al. Mechanical properties of engineered cementitious composites with high volume fly ash[J].Wuhan University of Technology-Materials,2009(S1):166.
11 Kim J K, Kim J S, Gee J H, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag[J].Cement and Concrete Composites,2007,37(7):1096.
12 Akkaya Y, Peled A, Picka J D, et al. Effect of sand addition on properties of fiber-reinforced cement composites[J].ACI Materials Journal,2000,97(3):393.
13 Yang E H, Yang Y, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J].ACI Materials Journal,2007,104(6):303.
14 Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J].Materials and Structures,2013,46(3):405.
15 Burak F, Kamile T, Ravi R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J].Composites Part B:Engineering,2014,60(60):359.
16 Naaman A E, Reinhardt H W. Proposed classification of FRC composites based on their tensile response[J].Materials and Structures,2006,39(5):547.
17 ASTM C 1609/C 1690M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading) C 1609/C 1690M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading)[S].West Conshohocken,PA:American Society of Testing and Materials,2006:1.
18 Li V C, Stang H. Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites[J].Advanced Cement Based Materials,1997,6(1):1.
19 Shi H S, Fang Z F. Influence of fly ash on early hydration and pore structure of cement pastes[J].Journal of the Chinese Ceramic Society,2004,32(1):95(in Chinese).
施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95.
[1] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[2] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[5] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[6] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[7] 朱彬荣, 潘金龙, 周震鑫, 张洋. 3D打印技术应用于大尺度建筑的研究进展[J]. 材料导报, 2018, 32(23): 4150-4159.
[8] 曹园章, 郭丽萍, 臧文洁, 张健, 薛晓丽. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149.
[9] 毛倩瑾, 伍文文, 梁鹏, 王子明, 崔素萍. 海藻酸钙/环氧微胶囊在水泥基材料中的自修复作用[J]. 材料导报, 2018, 32(22): 4016-4021.
[10] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[11] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[12] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[13] 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展*[J]. CLDB, 2017, 31(5): 139-144.
[14] 杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
[15] 左俊卿,周虹,姚武,吴德龙,刘小艳,张玉梅. CNT-CF水泥基材料传感特性研究*[J]. 材料导报编辑部, 2017, 31(22): 125-129.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed