Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 995-999    https://doi.org/10.11896/j.issn.1005-023X.2018.06.026
  材料研究 |
基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能
牛恒茂1, 2, 武文红3, 赵燕茹4, 邢永明2
1 内蒙古建筑职业技术学院建筑工程学院,呼和浩特 010070;
2 内蒙古工业大学理学院,呼和浩特 010051;
3 内蒙古工业大学信息工程学院,呼和浩特 010051;
4 内蒙古工业大学土木工程学院,呼和浩特 010051
Analysis on Bending Properties of PVA Fiber Reinforced Cementitious Composites Based on PVA Fiber-Matrix Interface Property
NIU Hengmao1, 2, WU Wenhong3, ZHAO Yanru4, XING Yongming2
1 College of Construction Engineering, Inner Mongolia Technical College of Construction, Hohhot 010070;
2 College of Science, Inner Mongolia University of Technology, Hohhot 010051;
3 College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051;
4 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051
下载:  全 文 ( PDF ) ( 2161KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调整水胶比形成三种配比的聚乙烯醇纤维增强水泥基材料(PFRCC),应用单纤维拔出试验测定了PVA纤维-水泥基体界面参数(化学脱粘能Gd和摩擦粘结强度τ0),发现水胶比增加,界面性能参数Gdτ0均降低;应用三点弯曲试验获得了材料的弯曲韧度和强度,基于PVA纤维-基体界面性能分析,并结合断裂面处PVA纤维宏观影像和微观的扫描电镜(SEM)影像,研究了界面性能对材料弯曲性能的影响。结果表明:低水胶比下由于裂缝处高的应力和界面处纤维与水泥基体高的化学粘结力使大量桥接裂缝的纤维瞬间断裂而失效,导致材料的弯曲韧度和从开裂到弯曲材料强度的增幅较小;中水胶比下裂缝处纤维脱粘后滑动并受摩擦粘结强度作用被严重刮削;高水胶比下裂缝处大量纤维由于界面处低的化学粘结力被拔出,而且拔出的纤维在滑动过程中由于低的摩擦粘结强度被轻微刮削,故桥接裂缝的纤维经历长的滑动,宏观上呈现出高的弯曲挠度特征,因而材料的弯曲韧度和强度的增加幅度显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛恒茂
武文红
赵燕茹
邢永明
关键词:  水泥基材料  单纤维拔出  界面性能  纤维桥接形态  弯曲性能    
Abstract: Three types of polyvinyl alcohol (PVA) fiber reinforced cementitious composites (PFRCC) were produced by adjusting water/binder(w/b) ratio. A single fiber pullout test was utilized to measure interface parameter (chemical debonding energy Gd and frictional bond strength τ0) between PVA fiber and cementitious matrix and found that the values of Gd and τ0 decrease when w/b increases. The values of bending toughness and strength of PFRCC was attained via three-point bending test. The effects of PVA fiber-matrix interface property on bending properties were evaluated based on interface analysis with the aid of the macro-image and SEM micrographs of PVA fibers morphology in the failure crack. The analysis results find out that a large number of fibers of the samples with low w/b in the final failure crack are instantly ruptured due to high strength in the crack and high chemical bond in the fiber-matrix interface, which leads to low bending toughness and low rate of improvement from crack strength to bending strength; the fibers of the samples with moderate w/b in the crack can debond and slide, but the morphology of the fibers are seriously scraped by frictional bond strength. While a large number of fibers of the samples with high w/b in the crack are pulled out due to low chemical bond and the pull-out fibers are slightly scraped during sliding by low frictional bond strength. Therefore, the bridging fibers experience longer slippage and the samples are characterized by high bending deflection on a macro level, which results in high bending toughness value and high rate of strength improvement.
Key words:  cementitious composites    single fiber pullout    interface property    fiber bridging morphology    bending property
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(11362013); 内蒙古自治区人才开发基金项目; 内蒙古自治区高等学校科学研究项目(NJZY330); 内蒙古建筑职业技术学院科研创新团队项目
通讯作者:  赵燕茹,女,1971年生,博士,博士研究生导师,教授,主要从事纤维增强水泥基材料的研究 E-mail:zhaoyanru710523@126.com   
作者简介:  牛恒茂:男,1980年生,博士,副教授,主要从事水泥基材料的细观与高性能测试研究 E-mail:niuhengmao@163.com
引用本文:    
牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
NIU Hengmao, WU Wenhong, ZHAO Yanru, XING Yongming. Analysis on Bending Properties of PVA Fiber Reinforced Cementitious Composites Based on PVA Fiber-Matrix Interface Property. Materials Reports, 2018, 32(6): 995-999.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.026  或          https://www.mater-rep.com/CN/Y2018/V32/I6/995
1 Li V C.高延性纤维增强水泥基复合材料的研究进展及应用[J].硅酸盐学报,2007,35(4):531(in Chinese).
Li V C.Progress and application of engineered cementitious compo-sites[J].Journal of the Chinese Ceramic Society,2007,35(4):531.
2 Ali H, Ali K, Mohammad S, et al. Ductile behavior of high performance fiber reinforced cementitious composite (HPFRCC) frames[J].Construction and Building Materials,2016,115:681.
3 Li V C, Mishra D K, Wu H C. Matrix design for pseudo strain-har-dening fiber reinforced cementitious composites[J].Materials and Structures,1995,28(10):586.
4 Yang E H, Li V C. Fiber-bridging constitutive law of engineered cementitious composites[J].Journal of Advanced Concrete Technology,2008,6(1):181.
5 Randon C, Li V C, Wu C. Measuring and modifying interface pro-perties of PVA Fiber in ECC Matrix[J].Journal of Materials in Civil Engineering,2001,13(6):399.
6 Kanda T, Li V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J].Journal of Materials in Civil Engineering,1998,10(1):5.
7 Li V C, Wang S X, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483.
8 Li V C, Wu C, Wang S X, et al. Interface tailoring for strain-har-dening PVA-ECC[J].ACI Materials Journal,2002,99(5):463.
9 Yang E H, Yang Y Z, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J].ACI Materials Journal,2007,104(6):303.
10 Zhu Yu, Yang Y Z, Gao X J, et al. Mechanical properties of engineered cementitious composites with high volume fly ash[J].Wuhan University of Technology-Materials,2009(S1):166.
11 Kim J K, Kim J S, Gee J H, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag[J].Cement and Concrete Composites,2007,37(7):1096.
12 Akkaya Y, Peled A, Picka J D, et al. Effect of sand addition on properties of fiber-reinforced cement composites[J].ACI Materials Journal,2000,97(3):393.
13 Yang E H, Yang Y, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J].ACI Materials Journal,2007,104(6):303.
14 Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J].Materials and Structures,2013,46(3):405.
15 Burak F, Kamile T, Ravi R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J].Composites Part B:Engineering,2014,60(60):359.
16 Naaman A E, Reinhardt H W. Proposed classification of FRC composites based on their tensile response[J].Materials and Structures,2006,39(5):547.
17 ASTM C 1609/C 1690M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading) C 1609/C 1690M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading)[S].West Conshohocken,PA:American Society of Testing and Materials,2006:1.
18 Li V C, Stang H. Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites[J].Advanced Cement Based Materials,1997,6(1):1.
19 Shi H S, Fang Z F. Influence of fly ash on early hydration and pore structure of cement pastes[J].Journal of the Chinese Ceramic Society,2004,32(1):95(in Chinese).
施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95.
[1] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[2] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[3] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[4] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[5] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[6] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[7] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[8] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[9] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[10] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[11] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[12] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[13] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[14] 刘娟红, 邹敏, 李康, 谢永江. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J]. 材料导报, 2023, 37(19): 22020132-9.
[15] 徐鹏, 张轩翰, 明高林, 施诗. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 21080265-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed