Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 987-994    https://doi.org/10.11896/j.issn.1005-023X.2018.06.025
  材料研究 |
高温重复荷载作用下复合纤维沥青混合料细微观结构分析
张航1, 2, 郝培文3, 凌天清1, 王学武2, 何亮1
1 重庆交通大学土木工程学院,重庆 400074;
2 四川省交通运输厅工程质量监督局,成都 610041;
3 长安大学道路结构与材料交通行业重点实验室,西安 710064
Analysis of Microscopic Structure of Composite Fiber Asphalt Mixture Subjected to Repeated Loading Under High Temperature
ZHANG Hang1, 2, HAO Peiwen3, LING Tianqing1, WANG Xuewu2, HE Liang1
1 College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074;
2 Engineering Quality Supervision Bureau of Sichuan Provincial Transport Department, Chengdu 610041;
3 Key Laboratory for Road Structure and Material of Communications Industry, Chang’an University, Xi’an 710064;
下载:  全 文 ( PDF ) ( 3035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究高温重复荷载作用对复合纤维沥青混合料细微观结构的影响,基于加速加载试验,对掺加三种复合纤维和不掺加纤维的沥青混合料车辙变化规律进行研究。采用CT扫描试验,对加速加载前后各组沥青混合料的平均空隙体积和粗集料水平倾角的变化规律进行研究。结果表明:相比于不掺加纤维的沥青混合料,掺加复合纤维后,沥青混合料的抗车辙能力显著提升,其中掺加复合纤维Ⅲ的沥青混合料车辙深度减少了61%;掺加三种复合纤维后,沥青混合料平均空隙体积有所降低,粗集料水平倾角有所增加,在高温重复荷载作用下,复合纤维能够显著减缓沥青混合料平均空隙体积的增加幅度,增幅在13%以内,同时减缓粗集料水平倾角的降低幅度,降低值在6.6°以内;沥青混合料车辙深度与加速加载前平均空隙体积、粗集料倾角变化均存在较好的线性相关性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张航
郝培文
凌天清
王学武
何亮
关键词:  道路工程  复合纤维  加速加载试验  CT扫描试验  平均空隙体积  粗集料水平倾角    
Abstract: In order to study the influence of the composite fiber on the asphalt mixture fine microstructure under high tempe-rature and repeated loading, the accelerated loading test was carried out to investigate the rutting depth of asphalt mixture with additional three kinds of composite fiber and without fiber. CT scan test was utilized to examine the variation of average void volume and coarse aggregate inclination before and after accelerated loading test. The results implied that under high temperature repeated loa-ding, asphalt mixture adding three kinds of composite fiber can improve the anti-rutting ability of asphalt mixture, the asphalt mixture with composite fiber Ⅲ can reduce rutting depth of 61%. After adding three kinds of composite fiber, the mixture average void volume was decreased and coarse aggregate level angle was increased. Under high temperature and repeated loading, three kinds of composite fiber can significantly retard the increase of average pore volume of asphalt mixture, which increased less than 13%, and simultaneously slower the decrease of coarse aggregate level angle, which decreased less than 6.6 degrees. There is a good linear correlation of the rutting depth of asphalt mixture with the average volume of voids and the inclination of coarse aggregate.
Key words:  road engineering    composite fiber    accelerated loading test    CT test    average void volume    coarse aggregate inclination
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51478046; 51611130189)
作者简介:  张航:男,1990年生,博士研究生,助理工程师,主要研究方向为路面材料 E-mail:zhhighway@qq.com; 通信作者:何亮,男,1983年生,博士,副教授,硕士研究生导师,研究方向为沥青路面材料与养护新技术 E-mail:heliangf1@163.com
引用本文:    
张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
ZHANG Hang, HAO Peiwen, LING Tianqing, WANG Xuewu, HE Liang. Analysis of Microscopic Structure of Composite Fiber Asphalt Mixture Subjected to Repeated Loading Under High Temperature. Materials Reports, 2018, 32(6): 987-994.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.025  或          https://www.mater-rep.com/CN/Y2018/V32/I6/987
1 Bueno B D, Silva W R, Lima D C, et al. Engineering properties of fiber reinforced cold asphalt mixes[J].Journal of Environmental Engineering,2003,129(10):952.
2 Crispino M, Mariani E, Toraldo E. Assessment of fiber-reinforced bituminous mixtures’ compaction temperatures through mastics viscosity tests[J].Construction and Building Materials,2013,38:1031.
3 Wang F Z, Zhang Y H, Liu X X. Performance of hybrid fiber reinforced asphalt mixture[J].Journal of Hunan University of Science &Technology (Natural Science Edition),2008,23(2):71(in Chinese).
王发洲,张运华,刘小星.混杂纤维增强沥青混合料的性能研究[J].湖南科技大学学报(自然科学版),2008,23(2):71.
4 Yue H B. Research on performances of hybrid fiber modified asphalt mixture[D].Wuhan:Wuhan University of Technology,2008(in Chinese).
岳红波. 混杂纤维改性沥青混合料性能研究[D].武汉:武汉理工大学,2008.
5 Chen Z. Study on preparation and performance of fibers reinforced asphalt mixture[D].Wuhan:Wuhan University of Technology,2006(in Chinese).
陈筝. 纤维增强沥青混合料制备与性能研究[D].武汉:武汉理工大学,2006.
6 Gao H T, Zhang Y, Zhang L, et al. Research on low temperature crack resistance of hybrid fiber asphalt mixture[J].Journal of Jilin Institute of Architecture & Civil Engineering,2011,28(3):37(in Chinese).
高慧婷,张颖,张亮,等.混杂纤维沥青混合料低温抗裂性的研究[J].吉林建筑工程学院学报,2011,28(3):37.
7 Guo Z H, Shang D K, Wu C L, et al. Study on performance of asphalt mixtures with sepiolite/basalt fiber[J].Journal of Hebei University of Technology,2005,34(1):5(in Chinese).
郭振华,尚德库,邬翠莲,等.海泡石/玄武岩纤维复合沥青混合料性能研究[J].河北工业大学学报,2005,34(1):5.
8 Du X H. Study on the pavement performance of composite fiber asphalt mixture[D].Xi’an:Chang’an University,2013(in Chinese).
杜小虎. 复合纤维沥青混合料路用性能研究[D].西安:长安大学,2013.
9 Meng Z X. Research on mechanism of hybrid fiber reinforced asphalt mixtures[D].Xi’an:Chang’an University,2013(in Chinese).
孟紫璇. 复合纤维沥青混合料增强机理研究[D].西安:长安大学,2013.
10 Cai X. Rutting resistance evaluation and structure optimization of asphalt pavement[D].Guangzhou:South China University of Technology,2013(in Chinese).
蔡旭. 沥青路面抗车辙性能评价及结构优化[D].广州:华南理工大学,2013.
11 Wang H N, Li L, You Z P. Characterization on the 3D air void spatial distribution based on the microstructure of asphalt mixture[J].Journal of Wuhan University of Technology,2012,34(8):61(in Chinese).
汪海年,李磊,尤占平.基于细观结构特征的沥青混合料空隙三维分布特征研究[J].武汉理工大学学报,2012,34(8):61.
12 Hu C C, Wang D Y, Gibson N, et al. Identification and separation of aggregates in asphalt mixture[J].Journal of Highway and Transportation Research and Development,2011,28(1):13(in Chinese).
胡迟春,王端宜,Gibson Nelson,等.基于CT技术沥青混合料集料的识别与分离[J].公路交通科技,2011,28(1):13.
13 Wan C, Zhang X N, Wang S H, et al. Reconstruction of 3D digital specimen of asphalt mixture based on CT technology[J].Journal of Highway and Transportation Research and Development,2010,27(11):33(in Chinese).
万成,张肖宁,王邵怀,等.基于CT技术的沥青混合料三维数值化试样重建[J].公路交通科技,2010,27(11):33.
14 Wang H, Liu F. Research of microstructure performance of foamed asphalt cold recycled mixture in different compaction methods[J].Journal of Highway and Transportation Research and Development,2016,32(2):19(in Chinese).
王宏,刘锋.不同成型方式泡沫沥青冷再生混合料细微观结构性能研究[J].公路交通科技,2016,33(2):19.
15 Qin X, Shen A Q, Guo Y C. Relevance research on road perfor-mance of basalt fiber reinforced bitumen mastics and corresponding mixture[J].Materials Review B:Research Papers,2016,30(6):124(in Chinese).
覃潇,申爱琴,郭寅川.基于关联性的玄武岩纤维沥青胶浆及其混合料性能研究[J].材料导报:研究篇,2016,30(6):124.
16 Masad E, Somadevan N. Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties[J].Journal of Engineering Mechanics,2002,128(10):1106.
17 Coenen, Kutay, Sefidmazgi, et al. Aggregate structure characterization of asphalt mixtures using 2-Dmensional image analysis[J].Road Materials and Pavement Design,2012,12(3):433.
18 Kutay M E, Ozturk H I, Abbas A R, et al. Comparison of 2D and 3D image-based aggregate morphological indices[J].International Journal of Pavement Engineering,2011,12(4):421.
19 Wan C. Research on 3D reconstruction and digital test of asphalt concrete based on X-ray CT and finite element method[D].Guangzhou: South China University of Technology,2010(in Chinese).
万成. 基于X-ray CT和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学,2010.
20 Duan Y H, Zhang X N, Li Z, et al. Methods about digital representation on surface profile of X-ray concrete aggregates from 2-D to 3-D based on computed tomography[J].China Journal of Highway and Transport,2011,24(6):9(in Chinese).
段跃华,张肖宁,李智,等.基于工业CT的混凝土集料二维及三维轮廓表征方法[J].中国公路学报,2011,24(6):9.
21 Wu W L, Zhang X N, Li Z. Analysis of movement track of coarse particles during rutting test of asphalt mixture[J].Journal of South China University of Technology (Natural Science Edition),2009,37(11):27(in Chinese).
吴文亮,张肖宁,李智.沥青混合料车辙试验中粗颗粒运动轨迹的分析[J].华南理工大学学报(自然科学版),2009,37(11):27.
22 Wei H,Ying H,Ling T Q.Aggregates contact characteristics evalua-tion of asphalt mixtures by analyzing cut images[J].Journal of Civil, Architectural & Environmental Engineering,2010,32(3):69(in Chinese).
魏鸿,英红,凌天清.沥青混合料集料接触特性切片图像评价方法[J].土木建筑与环境工程,2010,32(3):69.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[8] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[9] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[10] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[11] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[12] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[13] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed