Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22050182-8    https://doi.org/10.11896/cldb.22050182
  高分子与聚合物基复合材料 |
废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响
况栋梁1, 马小军1,2, 马晓燕1,*, 袁斌3, 侯俊鹏1, 蔡军4
1 长安大学材料科学与工程学院,西安 710064
2 青海交通规划设计研究院有限公司,西宁 810000
3 甘肃路桥集团养护科技有限公司,兰州 730050
4 青海西互高速公路管理有限公司,西宁 810000
Effect of Waste Oil Residue Regenerators on Dynamic Mechanical Properties and Component Migration of Aged Asphalt
KUANG Dongliang1, MA Xiaojun1,2, MA Xiaoyan1,*, YUAN Bin3, HOU Junpeng1, CAI Jun4
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China
2 Qinghai Transportation Planning and Design Institute Co., Ltd., Xining 810000, China
3 Gansu Road and Bridge Construction Group Maintenance Technology Co., Ltd., Lanzhou 730050, China
4 Qinghai Xihu Highway Management Co., Ltd., Xining 810000, China
下载:  全 文 ( PDF ) ( 9334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,再生沥青的研究主要集中在老化沥青性能的恢复上,而对老化后再生沥青性能变化的研究较少。本研究以自制的两种废机油残留物再生剂(REOB1、REOB2)对老化基质沥青进行再生,并对再生沥青进行短期老化(TFOT)和长期老化(PAV)。采用动态剪切流变仪(DSR)和薄层棒状色谱仪(TLC-FID)分析再生沥青及其老化后的动态力学性能和化学组分变化情况。结果表明,两种REOB再生剂均能使老化基质沥青的性能恢复至原样沥青水平,并且REOB2再生剂与老化基质沥青的相容性优于REOB1再生剂;采用CAM模型对沥青复数模量、相位角主曲线进行拟合,并以原样沥青主曲线为参考,对老化与再生沥青拟合数据进行归一化处理,发现两种REOB再生剂均可以恢复老化基质沥青的复数模量和相位角。在二次老化过程中,RA+REOB再生沥青的归一化复模量指标(NCMI)在低频和中频范围内逐渐增大,即使经过长期老化,其复模量仍低于长期老化的基质沥青;而归一化相角指标(NPAI)在中频范围内的下降幅度明显大于低频范围和高频范围内的下降幅度,RA+REOB1再生沥青经过PAV老化后的NPAI低于长期老化后的基质沥青;随着老化程度的加深,RA+REOB再生沥青的化学组分从芳烃组分向胶质迁移,REOB1再生沥青经PAV老化后轻组分损失最大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
况栋梁
马小军
马晓燕
袁斌
侯俊鹏
蔡军
关键词:  道路工程  再生沥青  再生剂  二次老化  动态力学性能  化学组分    
Abstract: The study of recycled asphalt is currently primarily focused on the recovery of aging asphalt properties, with little attention paid to the aging of recycled asphalt. In this study, two types of recycled engine oil bottom (REOB1 and REOB2) were used to regenerate the aged matrix asphalt, and short-term (TFOT) and long-term (PAV) aging were performed on the recycled asphalt. The dynamic mechanical properties and chemical component changes of recycled asphalt and its aged condition were evaluated using the dynamic shear rheometer (DSR) and the thin layer chromatography-flame ionization detector (TLC-FID). The results show that both REOB regenerants can restore the performance of aging matrix asphalt to that of the original asphalt, and that REOB2 regenerant is more compatible with aging matrix asphalt than REOB1 regenerant;the complex modulus and phase angle of the aging matrix asphalt could be retrieved by both REOB regenerants, according to master curve fitting with the CAM model and normalization of the fitting data. During the secondary aging process, the normalized complex modulus index (NCMI) of RA+REOB reclaimed asphalt gradually increases in the low and medium frequency range, and even after long-term aging, its complex modulus is still lower than that of long-term aging matrix asphalt. The normalized phase angle index (NPAI) in the middle frequency range is significantly higher than in the low and high frequency ranges, and the NPAI of the RA+REOB1 recycled asphalt after PAV aging is lower than the matrix asphalt after long-term aging. The chemical components of the RA+REOB recycled asphalt migrate from the aromatic components to the resins as the aging degree increases, and the REOB1 reclaimed asphalt loses the most light components after PAV aging.
Key words:  road engineering    regenerated asphalt    rejuvenator    secondary aging    dynamic mechanical property    chemical component
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  U414  
基金资助: 青海省科技厅重点研发与转化计划项目(2021-SF-165);中国博士后面上基金项目(2020M683401);陕西省自然科学基金项目(2021JQ-262);中央高校基金项目(300102311402);国家自然科学基金(52208417)
通讯作者:  *马晓燕,长安大学材料科学与工程学院讲师。2008年南京林业大学土木工程专业本科毕业,2012年长安大学材料学硕士研究生毕业,2012—2015年在甘肃路桥集团养护科技有限公司担任研发中心主任,2019年长安大学道路材料科学与工程专业博士毕业,2020年至今在长安大学公路学院进行博士后研究。目前主要从事道路建筑材料和多尺度沥青材料结构和力学性能的计算。发表论文20余篇,包括Journal of Materials in Civil Engineering、Construction and Building Materials、《材料导报》等。xiaoyanma@chd.edu.cn   
作者简介:  况栋梁,长安大学材料科学与工程学院教授、博士研究生导师。2004年武汉理工大学化学工程与工艺专业本科毕业,2012年武汉理工大学复合材料学专业博士毕业。目前主要从事沥青材料改性与评价、固体废弃物高质化制备道路材料与高性能绿色铺装技术研究。发表论文50余篇,包括Construction and Building Materials、《中国公路学报》等。
引用本文:    
况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
KUANG Dongliang, MA Xiaojun, MA Xiaoyan, YUAN Bin, HOU Junpeng, CAI Jun. Effect of Waste Oil Residue Regenerators on Dynamic Mechanical Properties and Component Migration of Aged Asphalt. Materials Reports, 2024, 38(2): 22050182-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050182  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22050182
1 Guo P, Xie F Z, Meng J W, et al. Materials Reports, 2020, 34(13), 13100 (in Chinese).
郭鹏, 谢凤章, 孟建玮, 等. 材料导报, 2020, 34(13), 13100.
2 Kuang D L, Liu W C, Zhang Y, et al. China Journal of Highway and Transport, 2020, 33(7), 58 (in Chinese).
况栋梁, 刘文昌, 张阳, 等. 中国公路学报, 2020, 33(7), 58.
3 Yu H Y, Ma T, Wang D W, et al. China Journal of Highway and Transport, 2020, 33(10), 1 (in Chinese).
于华洋, 马涛, 王大为, 等. 中国公路学报, 2020, 33(10), 1.
4 Devulapalli L, Kothandaraman S, Sarang G. International Journal of Pavement Engineering, 2020, 23(4), 1038.
5 Ismael M Q. Innovative Infrastructure Solutions, 2022, 7(2), 1.
6 Luo H Y, Huang X M. China Journal of Highway and Transport, 2021, 34(10), 98 (in Chinese).
罗浩原, 黄晓明. 中国公路学报, 2021, 34(10), 98.
7 Li X M, Wei D B, Yao Z J, et al. Journal of Building Materials, 2018, 21(6), 992 (in Chinese).
李晓民, 魏定邦, 姚志杰, 等. 建筑材料学报, 2018, 21(6), 992.
8 Zhang K. Researches on the direct resource utilization and modified graded utilization of used engine oil. Ph. D. Thesis, Taiyuan University of Technology, China, 2018 (in Chinese).
张康. 废机油的直接资源化利用及改性分级利用研究. 博士学位论文, 太原理工大学, 2018.
9 Feng Z G, Zhao P X, Yao D D, et al. China Sciencepaper, 2021, 16(2), 121 (in Chinese).
冯振刚, 赵培馨, 姚冬冬, 等. 中国科技论文, 2021, 16(2), 121.
10 Gokalp I, Uz V E. Journal of Transportation Engineering, 2021, 147(4), 21.
11 Li H B, Dong B, Wang W J, et al. Applied Sciences, 2019, 9(9), 1767.
12 Luo H Y, Huang X M, Tian R Y, et al. Construction and Building Materials, 2021, 297(2), 123777.
13 Zhou Z G, Yang Y P, Zhang Q P, et al. Journal of Traffic and Transportation Engineering, 2011, 11(6), 10 (in Chinese).
周志刚, 杨银培, 张清平, 等. 交通运输工程学报, 2011, 11(6), 10.
14 韩森, 张亚财, 高巍, 等. 中国专利, CN109142694A, 2019.
15 Zhao B. Study on effect of thermal oxidative aging intensity and regeneration on properties of asphalt and its mixture. Master’s Thesis, Hunan University, China, 2018 (in Chinese).
赵彬. 热氧老化强度与再生对沥青及其混合料性能的影响研究. 硕士学位论文, 湖南大学, 2018.
16 Zhu X X. Performance study on warm mix recycled asphalt mastic containing high percentage of RAP binder. Master’s Thesis, Dalian University of Technology, China, 2019(in Chinese).
朱晓旭. 大比例温拌再生沥青胶浆性能研究. 硕士学位论文, 大连理工大学, 2019.
17 Ma X Y. Study on asphalt-filler interaction and prediction of asphalt mastic performance. Ph. D. Thesis, Chang’an University, China, 2019(in Chinese).
马晓燕. 沥青-填料交互作用效应与沥青胶浆性能预估研究. 博士学位论文, 长安大学, 2019.
18 Ma X Y, Chen H X, Yang P W, et al. Journal of Chang’an University(Natural Science Edition), 2019, 39(4), 35 (in Chinese).
马晓燕, 陈华鑫, 杨平文, 等. 长安大学学报(自然科学版), 2019, 39(4), 35.
19 Mangiafico S, Sauzeat C, Di Benedetto H. Construction and Building Materials, 2019, 197, 454.
20 Yusoff N I M, Mounier D, Marc-Stephane G, et al. Construction and Building Materials, 2013, 38, 395.
21 Olard F, Di Benedetto H. Road Materials and Pavement design, 2003, 4(2), 185.
22 Feng Z G, Zhang J B, Li X J, et al. Chinese Journal of Chromatography, 2015, 33(2), 195 (in Chinese).
冯振刚, 张建宾, 李新军, 等. 色谱, 2015, 33(2), 195.
23 Lu X, Li X G. Road Machinery & Construction Mechanization, 2020, 37(12), 6 (in Chinese).
路鑫, 李小刚. 筑路机械与施工机械化, 2020, 37(12), 6.
24 Feng H S, Guo J X, Xiong R Y, et al. Petrochemical Technology, 2020, 49(12), 1215 (in Chinese).
冯恒水, 郭继香, 熊瑞颖, 等. 石油化工, 2020, 49(12), 1215.
25 Kuang D L, Yu J Y, Cai Z W, et al. Highway, 2011(5), 153 (in Chinese).
况栋梁, 余剑英, 蔡正文, 等. 公路, 2011(5), 153.
26 Zou Y H, Chen S M, Chen W S, et al. Petroleum Asphalt, 2009, 23(6), 17 (in Chinese).
邹异红, 陈守明, 陈伟三. 石油沥青, 2009, 23(6), 17.
27 Kaya D, Topal A, McNally T. Construction and Building Materials, 2019, 221(10), 345.
28 Zhang J, Zhang X, Liang M, et al. Construction and Building Materials, 2020, 238, 117778.
29 Yin Y M. Research on dynamic viscoelastic characteristics and shear modulus predicting methods for asphalt mixtures based on dynamic mechanical analysis (DMA) means. Ph. D. Thesis, South China University of Technology, China, 2011(in Chinese).
尹应梅. 基于DMA法的沥青混合料动态黏弹特性及剪切模量预估方法研究. 博士学位论文, 华南理工大学, 2011.
30 Behnood A. Journal of Cleaner Production, 2019, 231(10), 171.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[3] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[4] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[5] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[6] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[7] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[8] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[9] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[10] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[11] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[12] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[13] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed