Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080070-10    https://doi.org/10.11896/cldb.23080070
  无机非金属及其复合材料 |
碳化硅粉填充沥青混合料微波自愈合性能及合理掺量
唐杰1,2, 赵华1,*, 高红成3
1 南昌大学工程建设学院,南昌 330031
2 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
3 中交第二航务工程局有限公司,武汉 430040
Microwave Self-healing Properties and Reasonable Content of Silicon Carbide Powder Filled Asphalt Mixtures
TANG Jie1,2, ZHAO Hua1,*, GAO Hongcheng3
1 School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
2 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
3 CCCC Second Harbor Engineering Company Ltd., Wuhan 430040, China
下载:  全 文 ( PDF ) ( 6408KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统沥青混合料吸波升温性能差,限制了微波养护技术在路面工程中的应用。本工作引用理化性质稳定的碳化硅粉作为矿粉填料的替代品掺入沥青混合料中以增强其微波吸收能力,加速微波加热下混合料的宏观裂纹愈合。设计了不同碳化硅等体积替换矿粉比例(0%、10%、20%、30%、40%、50%、60%)的AC-13沥青混合料,确定不同替换比下混合料的最佳油石比,并检测其路用性能;基于断裂-愈合-断裂试验和微波加热试验,将断裂峰值力恢复率作为愈合指数,评价沥青混合料的微波自愈合能力;采用灰色关联分析法提出了碳化硅合理替换掺量。结果表明:填料及沥青胶浆的微观特性对沥青混合料宏观性能的影响显著,碳化硅粉的掺入可增强沥青混合料的力学性能和高温稳定性,且它们随碳化硅替换比例增大而呈现抛物线变化趋势;但碳化硅粉对沥青混合料的水稳定性有不利影响。随着碳化硅替换比例增大,沥青混合料的升温速率和愈合指数增大,且不同碳化硅替换比的沥青混合料存在最佳微波加热时间;吸波剂以填料形式掺入沥青混合料中,吸波升温更加均匀。灰色关联分析结果显示碳化硅粉填充沥青混合料的合理替换比为30%~40%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐杰
赵华
高红成
关键词:  道路工程  沥青混合料  微波加热  自愈合  路用性能  升温行为    
Abstract: The traditional asphalt mixture has poor microwave absorption performance, which limits the application of microwave maintenance technology in pavement engineering. In this work, in order to enhance the microwave absorption capacity, silicon carbide powder with stable physicochemical properties is cited as a substitute for mineral powder filler incorporated into asphalt mixtures, accelerating the macroscopic crack healing of mixtures under microwave heating. AC-13 asphalt mixes with different silicon carbide equal volume replacement of mineral powder (0%, 10%, 20%, 30%, 40%, 50%, 60%) were designed. The optimum asphalt content of the different types of mixtures were determined and tested for their road performance. The microwave self-healing capability of asphalt mixtures was evaluated by fracture-healing-fracture test and microwave hea-ting test based on the peak fracture force recovery rate as a healing index. Gray correlation analysis was used to propose a reasonable replacement doping of silicon carbide. The results show that the microscopic properties of fillers and asphalt mastics have significant influence on the macroscopic properties of asphalt mixtures. The incorporation of silicon carbide powder can enhance the mechanical properties and high temperature stability of asphalt mixtures, and shows a parabolic trend with the increase of silicon carbide replacement ratio. However, it has an unfavo-rable effect on the water stability of asphalt mixtures. As the silicon carbide replacement ratio increases, the warming rate and healing index also increase, and the optimal microwave heating time exists for asphalt mixtures with different silicon carbide replacement ratios. The microwave absorber is incorporated into the asphalt mixture in the form of filler, which makes the wave-absorbing warming more uniform. Gray correlation analysis shows that the reasonable replacement ratio of silicon carbide powder filled asphalt mixtures is 30% to 40%.
Key words:  road engineering    asphalt mixture    microwave heating    self-healing    road performance    heating mechanism
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  U414  
基金资助: 国家自然科学基金(52168062)
通讯作者:  * 赵华,2016年6月毕业于长安大学公路学院,获工学博士学位。现为南昌大学工程建设学院副教授、硕士研究生导师。长期从事土木工程材料的改性及道路工程材料的绿色建养等方面的研究工作。已主持国家自然科学基金等项目10余项,在国内外权威期刊上公开发表论文40余篇。zhaohua@ncu.edu.cn   
作者简介:  唐杰,2023年6月于南昌大学获得工学学士学位,现为哈尔滨工业大学交通科学与工程学院硕士研究生,主要研究领域为道路工程材料。
引用本文:    
唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
TANG Jie, ZHAO Hua, GAO Hongcheng. Microwave Self-healing Properties and Reasonable Content of Silicon Carbide Powder Filled Asphalt Mixtures. Materials Reports, 2024, 38(20): 23080070-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080070  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080070
1 Yang S, Braham A, Wang L, et al. Construction and Building Materials, 2016, 115, 527.
2 Zheng J L, Lv S T, Liu C C. Science Bulletin, 2020, 65, 3219.
3 Canestrari F, Virgili A, Graziani A, et al. International Journal of Fatigue, 2015, 70, 351.
4 García A, Bueno M, Norambuena-Contreras J, et al. Construction and Building Materials, 2013, 49, 1.
5 Liu Q, Wu S, Schlangen E. Construction and Building Materials, 2013, 41, 345.
6 Liu Q, Schlangen E, van de Ven M, et al. Construction and Building Materials, 2012, 29, 403.
7 García A, Norambuena-Contreras J, Partl M N. Construction and Building Materials, 2013, 46, 48.
8 Ding L, Wang X, Zhang W, et al. Applied Sciences, 2018, 8(12), 2360.
9 Sun Y, Wu S, Liu Q, et al. Applied Thermal Engineering, 2018, 129, 871.
10 Liu C S, Leng L Y. Journal of Municipal Technology, 2023, 41(1), 42 (in Chinese).
刘春生, 冷陆游. 市政技术, 2023, 41(1), 42.
11 Wang A G, He M C, Mo L W, et al. Materials Reports, 2019, 33(17), 2939 (in Chinese).
王爱国, 何懋灿, 莫立武, 等. 材料导报, 2019, 33(17), 2939.
12 Lou B, Sha A, Li Y, et al. Construction and Building Materials, 2020, 246, 118510.
13 Xiang Y K, Liu W Z, Zhao Y, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 667 (in Chinese).
向阳开, 刘威震, 赵毅, 等. 硅酸盐通报, 2022, 41(2), 667.
14 Liu J, Zhang T, Guo H, et al. Journal of Cleaner Production, 2022, 342, 130932.
15 Liu J, Wang Z, Li M, et al. Construction and Building Materials, 2022, 353, 129155.
16 Li H, Yu J, Liu Q, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
17 Guo S, Dai Q, Wang Z, et al. Composites Part B: Engineering, 2017, 124, 134.
18 Khavandi K A, Asadi M. Construction and Building Materials, 2022, 328, 127091.
19 García A, Norambuena-Contreras J, Partl M N. Construction and Building Materials, 2013, 46, 48.
20 Jia Y, Liu G, Gao Y, et al. Construction and Building Materials, 2023, 364, 129916.
21 Wang P, Wang Q, Wang J, et al. Acta Polymerica Sinica, 2010, 6(9), 1100.
22 Liu X, Zhao Y, Liu W, et al. Journal of Cleaner Production, 2022, 332, 130111.
23 Zhang Y S. Study on properties of SiC modified asphalt and its mixture. Master’s Thesis, Hebei University of Engineering, China, 2022 (in Chinese).
张颖森. 碳化硅(SiC)改性沥青及其混合料性能研究. 硕士学位论文, 河北工程大学, 2022.
24 Han W S, Zhang Y S, Gao Y. Transpoworld, 2023(13), 25 (in Chinese).
韩武松, 张颖森, 高颖. 交通世界, 2023(13), 25.
25 Ahmad S, Husain A, Yatoo M A, et al. Materials Today: Proceedings, 2023, 3, 088.
26 Zhao H, Tang J, Liu W N. Materials Reports, 2024, 38(14), 23040058(in Chinese).
赵华, 唐杰, 刘伟男. 材料导报, 2024, 38(14), 23040058.
27 Jiang J, Ni F, Wu F, et al. Construction and Building Materials, 2019, 196, 284.
28 Lin M, Li P, Nian T F, et al. Journal of Functional Materials, 2020, 51(6), 150 (in Chinese).
林梅, 李萍, 念腾飞, 等. 功能材料, 2020, 51(6), 150.
29 Wang F, Zhu H, Shu B, et al. Construction and Building Materials, 2022, 342, 127973.
30 Zhang Q Y, Luo J, Zhao Y, et al. Materials Reports, 2023, 37(8), 58 (in Chinese).
张庆宇, 罗京, 赵毅, 等. 材料导报, 2023, 37(8), 58.
31 He W, Ling H W, Shi J, et al. Journal of Municipal Technology, 2022, 40(4), 76 (in Chinese).
何巍, 凌宏伟, 石剑, 等. 市政技术, 2022, 40(4), 76.
32 Han J C, Li J, Li B W, et al. Journal of Inner Mongolia University of Science and Technology, 2015, 34(1), 18 (in Chinese).
韩继铖, 李解, 李保卫, 等. 内蒙古科技大学学报, 2015, 34(1), 18.
33 Shen L, Gao M, Feng S, et al. Journal of Food Engineering, 2022, 319, 110903.
34 Zhou Z X. Research on relationship of filler and the high-and-low temperature performance of asphalt mortar and performance prediction of asphalt mortar. Master’s Thesis, Hunan University, China, 2013 (in Chinese).
周志雄. 填料对沥青胶浆高低温性能影响与沥青胶浆性能预测研究. 硕士学位论文, 湖南大学, 2013.
35 Li H, Ling X W, Zhao J C, et al. Journal of Municipal Technology, 2022, 40(4), 55(in Chinese).
李浩, 凌贤武, 赵聚成, 等. 市政技术, 2022, 40(4), 55.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[6] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[7] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[8] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[9] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[10] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[11] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[12] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[13] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[14] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[15] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed