Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22090060-7    https://doi.org/10.11896/cldb.22090060
  高分子与聚合物基复合材料 |
植物油微胶囊沥青混合料的微观力学性能及自愈合机制
汤文*, 旷强, 张宇翔, 吕悦晶
武汉科技大学汽车与交通工程学院,武汉 430065
Micromechanical Properties and Self-healing Mechanism of Vegetable Oil Microencapsulated Asphalt Mixture
TANG Wen*, KUANG Qiang, ZHANG Yuxiang, LYU Yuejing
College of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
下载:  全 文 ( PDF ) ( 10945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究植物油微胶囊沥青混合料的微观力学性能及自愈合机制,利用分子动力学方法基于12分子沥青模型构建沥青微裂缝模型,采用植物油提取物油酸、亚油酸以及石油基再生剂乙基四氢化萘作为芯材,探究三种芯材释放后沥青微裂缝的自愈合进程,计算沥青分子的自扩散系数并分析不同芯材的作用机制,同时构建沥青-集料模型,采用粘聚能、粘附能、粘附强度等指标分析融入不同芯材后沥青-集料界面的微观力学性能。结果表明:芯材的释放加速了沥青分子的自扩散,提高了微裂缝的自愈合能力,且微裂缝自愈合能力随温度的升高而增强;与芯材融合后老化沥青的粘聚能和粘附能分别提高了37.2%和36.8%以上,并且老化沥青-集料界面的粘附强度增加;与石油基再生剂相比,植物油能更好地促进微裂缝的愈合。通过分子动力学技术可以更深入地探查微胶囊沥青路面的自愈合机制,从而为微胶囊芯材的设计与选择提供可行的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤文
旷强
张宇翔
吕悦晶
关键词:  沥青混合料  微胶囊  自愈合  分子动力学  粘聚能  粘附能  粘附强度    
Abstract: To study the micromechanical properties and self-healing mechanism of vegetable oil microencapsulated asphalt mixture, the asphalt microcracks model was constructed based on the 12-molecule asphalt model by molecular dynamics methods. Oleic acid, linoleic acid, and ethyl tetralin were used as the core material of the microcapsules. The self-healing process of asphalt microcracks was investigated during the release of core materials. And the self-diffusion coefficients of asphalt molecules were calculated to explore the healing mechanism with different core materials. Moreover, the asphalt-aggregate interface model was constructed, and indexes including cohesion energy, adhesion energy, and adhesion strength were used to analyze the microscopic properties of the asphalt-aggregate interface incorporating different core materials. The results implied that the release of the core material accelerated the self-diffusion of asphalts, improved the self-healing efficiency of micro-cracks, and the self-healing efficiency increased with temperature. Due to the release of core materials, the cohesion energy and adhesion energy of aged asphalts increased by more than 37.2% and 36.8%, and the adhesion strength of the interface was also improved. Furthermore, compared with petroleum-based regenerant, vegetable oil could be better in promoting micro-cracks healing. Molecular dynamics could be utilized in deeply exploring the self-healing mechanism of microcapsule asphalt pavement, and providing a feasible method for the design and selection of microcapsule core materials.
Key words:  asphalt mixture    microcapsules    self-healing    molecular dynamics    cohesion energy    adhesion energy    adhesion strength
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51508428);青海省重点研发与转化计划项目(2021-QY-207);青海省交通运输厅科技项目(2022-01)
通讯作者:  *汤文,武汉科技大学汽车与交通工程学院副教授。2009年9月毕业于同济大学道路与铁道工程专业,获工学博士学位。目前主要从事新型路面结构与材料、道路养护与管理技术等方面的研究工作。发表论文30余篇,包括《同济大学学报》《哈尔滨工业大学学报》《建筑材料学报》等。tangwen@wust.edu.cn   
引用本文:    
汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
TANG Wen, KUANG Qiang, ZHANG Yuxiang, LYU Yuejing. Micromechanical Properties and Self-healing Mechanism of Vegetable Oil Microencapsulated Asphalt Mixture. Materials Reports, 2024, 38(4): 22090060-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090060  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22090060
1 He L, Cai Z, Feng C, et al. Journal of Chang’an University:Natural Science Edition, 2018, 38(2), 11(in Chinese).
何亮, 蔡卓, 冯畅, 等. 长安大学学报:自然科学版, 2018, 38(2), 11.
2 Zeng T Y, Sun X H, Zhuang S Y, et al. Guangdong Building Materials, 2016, 32(12), 2(in Chinese).
曾廷玉, 孙晓鸿, 庄胜意, 等. 广东建材, 2016, 32(12), 2.
3 Peng W J, Zhang Y Y, Norambuena-Contreras J, et al. Journal of China & Foreign Highway, 2019, 39(5), 7(in Chinese).
彭文举, 张瑶瑶, Norambuena-Contreras J, 等. 中外公路, 2019, 39(5), 7.
4 Sun D, Lu T, Zhu X, et al. Construction and Building Materials, 2018, 175, 88.
5 Bai A, Zhou X. Journal of Shanghai Jiaotong University (Science), 2018, 32(8), 41.
6 Bhasin A, Bommavaram R, Greenfield M L, et al. Journal of Materials in Civil Engineering, 2011, 23(4), 485.
7 Wang H N, Ding H Y, Feng B N, et al. Journal of Traffic and Transportation Engineering, 2020, 20(2), 14(in Chinese).
汪海年, 丁鹤洋, 冯珀楠, 等. 交通运输工程学报, 2020, 20(2), 14.
8 Cui Y N, Li X S, Zhang S Y. Journal of Building Materials, 2021, 24 (5), 1105 (in Chinese).
崔亚楠, 李雪杉, 张淑艳. 建筑材料学报, 2021, 24 (5), 1105.
9 Mullins O C, Sabbah H. Energy & Fuels, 2012, 26(7), 3986.
10 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
11 Tang W, Wang J S, Lyu Y J. Journal of Wuhan University of Science and Technology, 2020, 43(2), 123(in Chinese).
汤文, 王基双, 吕悦晶. 武汉科技大学学报, 2020, 43(2), 123.
12 Qu X, Liu Q, Guo M, et al. Construction and Building Materials, 2018, 187, 718.
13 Tang W, Guo Y J, Lyu Y J, et al. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(6), 92.
汤文, 郭颖君, 吕悦晶, 等. 重庆交通大学学报(自然科学版), 2022, 41(6), 92.
14 Ji J, Yao H, Suo Z, et al. Journal of Materials in Civil Engineering, 2017, 29(3), D4016003.
15 Ding Y, Huang B, Shu X, et al. Fuel, 2016, 174, 267.
16 Yao H, Liu J, Xu M, et al. Scientific Reports, 2021, 11(1), 9890.
17 Pansu M, Gautheyrou J. Handbook of soil analysis:mineralogical, organic and inorganic methods, Springer Science & Business Media, Berlin, 2007.
18 Xu G, Wang H. Construction & Building Materials, 2016, 121, 246.
19 Gao Y, Zhang Y, Gu F, et al. Construction & Building Materials, 2018, 171, 214.
20 Huang M, Zhang H, Gao Y, et al. International Journal of Pavement Engineering, 2021, 22(3), 319.
21 Chen W, Chen S, Zheng C. Construction and Building Materials, 2021, 306, 124888.
22 Xu G, Hao W. Fuel, 2017, 188, 1.
23 Tam L H, Lau D. Polymer, 2015, 57, 132.
24 Wang H, Lin E, Xu G. International Journal of Pavement Engineering, 2017, 18(5), 414.
25 Zhu X Y, Lu C H, Dai Z W, et al. Chinese Science Bulletin, 2021, 66(22), 2802 (in Chinese).
朱兴一, 鲁乘鸿, 戴子薇, 等. 科学通报, 2021, 66(22), 2802.
[1] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[2] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[3] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[4] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[5] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[6] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[7] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[8] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[9] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[12] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[13] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[14] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[15] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed