Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22090060-7    https://doi.org/10.11896/cldb.22090060
  高分子与聚合物基复合材料 |
植物油微胶囊沥青混合料的微观力学性能及自愈合机制
汤文*, 旷强, 张宇翔, 吕悦晶
武汉科技大学汽车与交通工程学院,武汉 430065
Micromechanical Properties and Self-healing Mechanism of Vegetable Oil Microencapsulated Asphalt Mixture
TANG Wen*, KUANG Qiang, ZHANG Yuxiang, LYU Yuejing
College of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
下载:  全 文 ( PDF ) ( 10945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究植物油微胶囊沥青混合料的微观力学性能及自愈合机制,利用分子动力学方法基于12分子沥青模型构建沥青微裂缝模型,采用植物油提取物油酸、亚油酸以及石油基再生剂乙基四氢化萘作为芯材,探究三种芯材释放后沥青微裂缝的自愈合进程,计算沥青分子的自扩散系数并分析不同芯材的作用机制,同时构建沥青-集料模型,采用粘聚能、粘附能、粘附强度等指标分析融入不同芯材后沥青-集料界面的微观力学性能。结果表明:芯材的释放加速了沥青分子的自扩散,提高了微裂缝的自愈合能力,且微裂缝自愈合能力随温度的升高而增强;与芯材融合后老化沥青的粘聚能和粘附能分别提高了37.2%和36.8%以上,并且老化沥青-集料界面的粘附强度增加;与石油基再生剂相比,植物油能更好地促进微裂缝的愈合。通过分子动力学技术可以更深入地探查微胶囊沥青路面的自愈合机制,从而为微胶囊芯材的设计与选择提供可行的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤文
旷强
张宇翔
吕悦晶
关键词:  沥青混合料  微胶囊  自愈合  分子动力学  粘聚能  粘附能  粘附强度    
Abstract: To study the micromechanical properties and self-healing mechanism of vegetable oil microencapsulated asphalt mixture, the asphalt microcracks model was constructed based on the 12-molecule asphalt model by molecular dynamics methods. Oleic acid, linoleic acid, and ethyl tetralin were used as the core material of the microcapsules. The self-healing process of asphalt microcracks was investigated during the release of core materials. And the self-diffusion coefficients of asphalt molecules were calculated to explore the healing mechanism with different core materials. Moreover, the asphalt-aggregate interface model was constructed, and indexes including cohesion energy, adhesion energy, and adhesion strength were used to analyze the microscopic properties of the asphalt-aggregate interface incorporating different core materials. The results implied that the release of the core material accelerated the self-diffusion of asphalts, improved the self-healing efficiency of micro-cracks, and the self-healing efficiency increased with temperature. Due to the release of core materials, the cohesion energy and adhesion energy of aged asphalts increased by more than 37.2% and 36.8%, and the adhesion strength of the interface was also improved. Furthermore, compared with petroleum-based regenerant, vegetable oil could be better in promoting micro-cracks healing. Molecular dynamics could be utilized in deeply exploring the self-healing mechanism of microcapsule asphalt pavement, and providing a feasible method for the design and selection of microcapsule core materials.
Key words:  asphalt mixture    microcapsules    self-healing    molecular dynamics    cohesion energy    adhesion energy    adhesion strength
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51508428);青海省重点研发与转化计划项目(2021-QY-207);青海省交通运输厅科技项目(2022-01)
通讯作者:  *汤文,武汉科技大学汽车与交通工程学院副教授。2009年9月毕业于同济大学道路与铁道工程专业,获工学博士学位。目前主要从事新型路面结构与材料、道路养护与管理技术等方面的研究工作。发表论文30余篇,包括《同济大学学报》《哈尔滨工业大学学报》《建筑材料学报》等。tangwen@wust.edu.cn   
引用本文:    
汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
TANG Wen, KUANG Qiang, ZHANG Yuxiang, LYU Yuejing. Micromechanical Properties and Self-healing Mechanism of Vegetable Oil Microencapsulated Asphalt Mixture. Materials Reports, 2024, 38(4): 22090060-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090060  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22090060
1 He L, Cai Z, Feng C, et al. Journal of Chang’an University:Natural Science Edition, 2018, 38(2), 11(in Chinese).
何亮, 蔡卓, 冯畅, 等. 长安大学学报:自然科学版, 2018, 38(2), 11.
2 Zeng T Y, Sun X H, Zhuang S Y, et al. Guangdong Building Materials, 2016, 32(12), 2(in Chinese).
曾廷玉, 孙晓鸿, 庄胜意, 等. 广东建材, 2016, 32(12), 2.
3 Peng W J, Zhang Y Y, Norambuena-Contreras J, et al. Journal of China & Foreign Highway, 2019, 39(5), 7(in Chinese).
彭文举, 张瑶瑶, Norambuena-Contreras J, 等. 中外公路, 2019, 39(5), 7.
4 Sun D, Lu T, Zhu X, et al. Construction and Building Materials, 2018, 175, 88.
5 Bai A, Zhou X. Journal of Shanghai Jiaotong University (Science), 2018, 32(8), 41.
6 Bhasin A, Bommavaram R, Greenfield M L, et al. Journal of Materials in Civil Engineering, 2011, 23(4), 485.
7 Wang H N, Ding H Y, Feng B N, et al. Journal of Traffic and Transportation Engineering, 2020, 20(2), 14(in Chinese).
汪海年, 丁鹤洋, 冯珀楠, 等. 交通运输工程学报, 2020, 20(2), 14.
8 Cui Y N, Li X S, Zhang S Y. Journal of Building Materials, 2021, 24 (5), 1105 (in Chinese).
崔亚楠, 李雪杉, 张淑艳. 建筑材料学报, 2021, 24 (5), 1105.
9 Mullins O C, Sabbah H. Energy & Fuels, 2012, 26(7), 3986.
10 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
11 Tang W, Wang J S, Lyu Y J. Journal of Wuhan University of Science and Technology, 2020, 43(2), 123(in Chinese).
汤文, 王基双, 吕悦晶. 武汉科技大学学报, 2020, 43(2), 123.
12 Qu X, Liu Q, Guo M, et al. Construction and Building Materials, 2018, 187, 718.
13 Tang W, Guo Y J, Lyu Y J, et al. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(6), 92.
汤文, 郭颖君, 吕悦晶, 等. 重庆交通大学学报(自然科学版), 2022, 41(6), 92.
14 Ji J, Yao H, Suo Z, et al. Journal of Materials in Civil Engineering, 2017, 29(3), D4016003.
15 Ding Y, Huang B, Shu X, et al. Fuel, 2016, 174, 267.
16 Yao H, Liu J, Xu M, et al. Scientific Reports, 2021, 11(1), 9890.
17 Pansu M, Gautheyrou J. Handbook of soil analysis:mineralogical, organic and inorganic methods, Springer Science & Business Media, Berlin, 2007.
18 Xu G, Wang H. Construction & Building Materials, 2016, 121, 246.
19 Gao Y, Zhang Y, Gu F, et al. Construction & Building Materials, 2018, 171, 214.
20 Huang M, Zhang H, Gao Y, et al. International Journal of Pavement Engineering, 2021, 22(3), 319.
21 Chen W, Chen S, Zheng C. Construction and Building Materials, 2021, 306, 124888.
22 Xu G, Hao W. Fuel, 2017, 188, 1.
23 Tam L H, Lau D. Polymer, 2015, 57, 132.
24 Wang H, Lin E, Xu G. International Journal of Pavement Engineering, 2017, 18(5), 414.
25 Zhu X Y, Lu C H, Dai Z W, et al. Chinese Science Bulletin, 2021, 66(22), 2802 (in Chinese).
朱兴一, 鲁乘鸿, 戴子薇, 等. 科学通报, 2021, 66(22), 2802.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[5] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[6] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[9] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[10] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[11] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[12] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[13] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[14] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[15] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed