Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23080062-12    https://doi.org/10.11896/cldb.23080062
  路域废弃物资源化及高值化利用 |
热诱导自愈合沥青混凝土研究综述:一种可持续路面材料
董素芬1,*, 宋泽轩1, 张文辉1, 黄智德2, 韩宝国3
1 大连理工大学交通运输系,辽宁 大连 116024
2 山东交通学院交通土建工程学院,济南 250357
3 大连理工大学土木工程系,辽宁 大连 116024
Research Progress on Heat-induced Self-healing Asphalt Concrete: a Kind of Sustainable Pavement Material
DONG Sufen1,*, SONG Zexuan1, ZHANG Wenhui1, HUANG Zhide2, HAN Baoguo3
1 Department of Transportation and Logistics, Dalian University of Technology, Dalian 116024, Liaoning, China
2 School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
3 Department of Civil Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 3928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热诱导技术可以提高沥青混凝土的自愈合效率,改善路面的抗疲劳性能,延长其服役寿命并降低其全寿命周期成本,进而减少沥青混凝土生产和使用所产生的环境足迹(特别是碳足迹)。基于此,对沥青混凝土的电磁感应、微波和射线热诱导自愈合性能及其机理研究进行综述,并对沥青混凝土热诱导自愈合面临的主要难题和应用前景进行概述,以期为发展低碳及可持续路面提供支持。综述分析表明,调控并利用沥青混凝土的温度敏感性,分阶段实现裂缝界面沥青的流动与扩散是实现热诱导自愈合的关键;纤维状功能填料可使沥青混凝土在短时间产生高的热诱导自愈合效率,粒料类功能填料在长时加热后可赋予沥青混凝土高效自愈合性能;高导电和导热性功能填料对于电磁感应热诱导自愈合是不可缺少的;微波热诱导对沥青混凝土中的矿料进行加热,加入高导热和吸波性能功能填料均可改善其微波吸收能力,从而提高加热及自愈合效率;射线热诱导自愈合冷却过程快,不利于发挥降温过程的自愈合效果。在满足行车舒适性和安全性的前提下,低成本、低碳、高效以及操作安全是热诱导的应用基础,基于热诱导技术开发出智能、可自动响应、可持续的沥青混凝土是未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董素芬
宋泽轩
张文辉
黄智德
韩宝国
关键词:  沥青混凝土  自愈合  电磁感应热诱导  微波热诱导  射线热诱导  功能填料  沥青老化    
Abstract: Thermal induction technology can improve the self-healing efficiency of asphalt concrete, increase the fatigue resistance, extend the service life, and reduce the life cycle cost of asphalt concrete pavement, thereby reducing environmental footprint(especially carbon footprint) ge-nerated by the production and usage of asphalt concrete. Here reviews the thermal induced self-healing properties and mechanisms of asphalt concrete based on electromagnetic, microwave and ray induction, then envisions it's main challenges and application prospects to provide support for the development of low-carbon and sustainable pavement. It shows that regulation and utilization of the temperature sensitivity to realize the flow and diffusion of asphalt at the crack interface is the key to achieve thermal induced self-healing. Fibrous functional fillers with high thermal/electrical properties can make asphalt concrete produce high thermal induced self-healing efficiency in a short time, while granular functional fillers endow asphalt concrete with efficient self-healing performance after prolonged heating. Electromagnetic induced self-healing performance of asphalt concrete mainly depends on functional fillers. The mineral materials in asphalt concrete are heated by microwave, leading to low heating rates and efficiency. The microwave absorption capacity and self-healing efficiency can be improved by incorporating functional fillers with high thermal conductivity and wave absorbing properties. The cooling process of ray induced self-healing is too fast to get the realization of self-healing in the cooling process. Based on these, on the premise of driving comfort and safety, low-cost, low-carbon, efficient, and safe operation are the application foundations of thermal induction technology, and developing intelligent, automatically responsive, and sustainable asphalt concrete based on thermal induction technology is the future development direction.
Key words:  asphalt concrete    self-healing    electromagnetic-induction    microwave-induction    ray-induction    functional fillers    aging of asphalt
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  U414  
基金资助: 国家自然科学基金面上项目(52178188;51978127);国家自然科学基金青年科学基金项目(51908103)
通讯作者:  *董素芬,大连理工大学建设工程学院交通运输系副教授、硕/博士研究生导师。2006年山东交通学院土木工程系土木工程专业本科毕业,2009年重庆大学材料科学与工程学院材料科学与工程专业硕士毕业,2018年大连理工大学建设工程学院结构工程专业博士毕业,2021年到大连理工大学工作至今。目前主要从事智能路面材料与结构、超高性能混凝土与桥面结构、结构健康监测与交通探测以及纳米/纤维复合材料等方面的研究工作。撰写英文专著1部,授权发明专利5项,发表论文50余篇,包括Engineering、Cement and Concrete Composites、Composites Part A: Applied Science and Manufacturing、Composites Part B: Engineering、International Journal of Fatigue、Journal of Materials in Civil Engineering、Journal of Applied Physics、Construction and Building Materials等。dongsufen@dlut.edu.cn   
引用本文:    
董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
DONG Sufen, SONG Zexuan, ZHANG Wenhui, HUANG Zhide, HAN Baoguo. Research Progress on Heat-induced Self-healing Asphalt Concrete: a Kind of Sustainable Pavement Material. Materials Reports, 2024, 38(22): 23080062-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080062  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23080062
1 Li B. Induction heating and healing properties of asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2018(in Chinese).
李斌. 沥青混凝土感应加热及愈合特性研究. 硕士学位论文, 武汉理工大学, 2018.
2 Rojas-Pardo A, Muñoz-Cáceres O, Raposeiras A C, et al. Construction and Building Materials, 2022, 347, 128621.
3 Gallego J, Del Val M A, Contreras V, et al. Construction and Building Materials, 2013, 42, 1.
4 Zhao Y F, Xu N, Wang H N, et al. Materials Reports, 2022, 37(15), 21110097(in Chinese).
赵云飞, 徐宁, 汪海年, 等. 材料导报, 2022, 37(15), 21110097.
5 Yang P, Mai J M, Zheng H, et al. Guangdong Building Materials, 2017, 33(11), 46(in Chinese).
杨朋, 麦家敏, 郑瀚, 等. 广东建材, 2017, 33(11), 46.
6 Tang J Y, Gao D Y, Zhao J. Highway, 2015, 60(12), 221(in Chinese).
汤寄予, 高丹盈, 赵军. 公路, 2015, 60(12), 221.
7 Li H C, Yu J Y, Liu Q T, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
8 Dai Q L, Wang Z G, Hasan M R M. Construction and Building Materials, 2013, 49, 729.
9 Liu Q T, Schlangen E, Van De Ven M, et al. Road Materials and Pavement design, 2010, 11(1), 527.
10 Tabaković A, O'Prey D, Mckenna D, et al. Case Studies in Construction Materials, 2019, 10, e233.
11 Yang H W, Ouyang J, Jiang Z, et al. Construction and Building Materials, 2023, 362, 129701.
12 Norambuena-Contreras J, Garcia A. Materials & Design, 2016, 106, 404.
13 Joenck F T, Joenck V B C, Del Carpio J A V, et al. Materia-Rio De Janeiro, 2022, 27(4), e20220221.
14 Zhu X Y, Cai Y S, Zhong S, et al. Construction and Building Materials, 2017, 141, 12.
15 Gómez-Meijide B, Ajam H, Lastra-González P, et al. Construction and Building Materials, 2016, 126, 957.
16 Li Y Y, Feng J L, Yang F, et al. Construction and Building Materials, 2021, 295, 123618.
17 Salih S, Gómez-Meijide B, Aboufoul M, et al. Construction and Building Materials, 2018, 167, 716.
18 Ajam H, Lastra-González P, Gómez-Meijide B, et al. Journal of Testing and Evaluation, 2017, 45(6), 1933.
19 Dinh B H, Park D W, Phan T M. KSCE Journal of Civil Engineering, 2018, 22(6), 2064.
20 Wang H P. Design and evaluation of conductive asphalt concrete for self-healing. Master's Thesis, Southeast University, China, 2016(in Chinese).
王昊鹏. 自修复型导电沥青混凝土设计与评价. 硕士学位论文, 东南大学, 2016.
21 Li H C. Study on gradient healing and aging characteristics of asphalt concrete via electromagnetic induction heating. Ph. D. Thesis, Wuhan University of Technology, China, 2020(in Chinese).
李贺川. 电磁感应加热沥青混凝土梯度愈合与老化特性研究. 博士学位论文, 武汉理工大学, 2020.
22 Yu W. Research on induction self-healing properties of warm asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2017(in Chinese).
余万. 温拌沥青混凝土感应加热自愈合性能研究. 硕士学位论文, 武汉理工大学, 2017.
23 Zhang L Y. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material. Master's Thesis, Hebei University of Technology, China, 2015(in Chinese).
张璐一. 掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究. 硕士学位论文, 河北工业大学. 2015.
24 Liu F C. Study on electrothermal and self-healing characteristics of conductive asphalt mixture. Master's Thesis, Hebei university of engineering, China, 2019(in Chinese).
刘富春. 导电沥青混合料电热及自愈合特性研究. 硕士学位论文, 河北工程大学, 2019.
25 Zhao L. Research on self-healing technology of dense asphalt concrete by induction heating. Master's Thesis, Chongqing Jiaotong University, China, 2015(in Chinese).
赵龙. 密实型沥青混凝土电磁感应加热自修复技术研究. 硕士学位论文, 重庆交通大学, 2015.
26 Mi Y X. Study on application technology of electrically conductive asphalt concrete. Master's Thesis, Wuhan University of Technology, China, 2011(in Chinese).
米轶轩. 导电沥青混凝土应用技术的研究. 硕士学位论文, 武汉理工大学, 2011.
27 Tang N. Study on conductive characteristic and application of conductive asphalt concrete. Ph. D. Thesis, Wuhan University of Technology, China, 2013(in Chinese).
唐宁. 导电沥青混凝土的导电特性与工程应用研究. 博士学位论文, 武汉理工大学. 2013.
28 Fakhri M, Bahmai B B, Javadi S, et al. Journal of Cleaner Production, 2020, 253, 119963.
29 Liu W. Study on enhancement mechanism and healing evaluation of microwave absorption of asphalt mixtures. Ph. D. Thesis, Southeast University, China, 2018(in Chinese).
刘为. 沥青混合料微波吸收增强机理与修复研究. 博士学位论文, 东南大学, 2018.
30 Khiavi A K, Asadi M. Construction and Building Materials, 2022, 328, 127091.
31 Liu Q T, Schlangen E, García Á, et al. Construction and Building Materials, 2010, 24(7), 1207.
32 Zhu X Y, Ye F Y, Cai Y S, et al. Construction and Building Materials, 2020, 234, 117378.
33 Li C, Wu S P, Chen Z W, et al. Construction and Building Materials, 2018, 193, 32.
34 Lyu L N, Ao Z X, Ding Q J, et al. Highway, 2009(2), 132(in Chinese).
吕林女, 敖灶鑫, 丁庆军, 等. 公路, 2009(2), 132.
35 Yildiz K, Atakan M. Construction and Building Materials, 2020, 262, 120448.
36 Zeng J W. Research on induction heating and healing performance of asphalt mixtures based on fatigue damage. Master's Thesis, Dalian University of Technology, China, 2019(in Chinese).
曾俊惟. 基于疲劳损伤的沥青混合料感应加热愈合研究. 硕士学位论文, 大连理工大学, 2019.
37 Xu H. Research on thermal induced self-healing performance of asphalt and asphalt mixtures. Master's Thesis, Chongqing Jiaotong University, China, 2021(in Chinese).
徐浩. 沥青及沥青混合料热诱导自愈性能研究. 硕士学位论文, 重庆交通大学, 2021.
38 Zhang W. Study on self-healing behavior of steel fiber asphalt concrete under induction heating. Master's Thesis, Chongqing Jiaotong University, China, 2022(in Chinese).
张伟. 钢纤维沥青混凝土感应加热自愈合行为研究. 硕士学位论文, 重庆交通大学, 2022.
39 Liu Q T, Schlangen E, Van De Ven M. Journal of Materials in Civil Engineering, 2013, 25(7), 880.
40 García A, Bueno M, Norambuena-Contreras J, et al. Construction and Building Materials, 2013, 49, 1.
41 Pamulapati Y, Elseifi M A, Cooper S B, et al. Construction and Building Materials, 2017, 146, 66.
42 Yoo D Y, Kim S, Kim M J, et al. Journal of Materials Research and Technology, 2019, 8(1), 827.
43 Norambuena-Contreras J, Serpell R, Vidal G V, et al. Construction and Building Materials, 2016, 127, 369.
44 Liu Q T, Schlangen E, Van De Ven M, et al. Construction and Building Materials, 2012, 29, 403.
45 García Á, Schlangen E, Van De Ven M, et al. Construction and Building Materials, 2012, 30, 59.
46 Yang C, Xie J, Wu S P, et al. Construction and Building Materials, 2021, 269, 121318.
47 Wool R P, O'Connor K M. Journal of Applied Physics, 1981, 52(10), 5953.
48 Sun D Q, Sun G Q, Zhu X Y, et al. Advances in Colloid and Interface Science, 2018, 256, 65.
49 Wei W F, Zhou S B, Tan H, et al. Highway, 2020, 65(3), 253(in Chinese).
韦万峰, 周胜波, 谭华, 等. 公路, 2020, 65(3), 253.
50 Yu T J, Zhang H T, Wang Y. Construction and Building Materials, 2020, 250, 118859.
51 Norambuena-Contreras J, Gonzalez A, Concha J L, et al. Construction and Building Materials, 2018, 187, 1039.
52 García Á. Fuel, 2012, 93(1), 264.
53 Sun D Q, Sun G Q, Zhu X Y, et al. Construction and Building Materials, 2017, 132, 230.
54 Meng Y J, Lai J, Ling L S, et al. Construction and Building Materials, 2023, 364, 129967.
55 Luo W, Huang S Y, Liu Y H, et al. Construction and Building Materials, 2022, 330, 127235.
56 Zhang L, Liu Q T, Wu S P, et al. Construction and Building Materials, 2018, 174, 401.
57 Zhu Q, Pu F P, Wang W Q, et al. Sichuan Building Materials, 2016, 42(1), 175(in Chinese).
朱乾, 蒲凤平, 王文奇, 等. 四川建材, 2016, 42(1), 175.
58 Li C. Study on the self-healing performance and mechanism of asphalt concrete under microwave radiation. Ph. D. Thesis, Wuhan University of Technology, China, 2020(in Chinese).
李超. 沥青混凝土微波热诱导自修复性能与机理研究. 博士学位论文, 武汉理工大学, 2020.
59 Ling D. Research on doping mechanism of BT4/BST high frequency dielectric ceramics. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2006(in Chinese).
凌栋. BT4/BST高频介电陶瓷的掺杂研究. 硕士学位论文, 南京航空航天大学, 2006.
60 Wang F, Zhu H B, Li Y Y, et al. Construction and Building Materials, 2022, 341, 127873.
61 Zhu H Z, Yuan H, Liu Y F, et al. Journal of Materials in Civil Engineering, 2020, 32(9), 04020248.
62 Liu Q T, Chen C, Li B, et al. Materials, 2018, 11(6), 913.
63 Sun Y H, Wu S P, Liu Q T, et al. Construction and Building Materials, 2017, 150, 673.
64 Li C, Wu S P, Chen Z W, et al. Construction and Building Materials, 2018, 189, 757.
65 Zhao H D, Zhong S, Zhu X Y, et al. Journal of Materials in Civil Engineering, 2017, 29(6), 04017007.
66 Yalcin E. Construction and Building Materials, 2021, 286, 122965.
67 Gulisano F, Crucho J, Gallego J, et al. Applied Sciences-basel, 2020, 10(4), 1428.
68 Qiu J, Van De Ven M F C, Wu S P, et al. Fuel, 2011, 90(8), 2710.
69 Wang H P, Yang J, Lu G Y, et al. Journal of Testing and Evaluation, 2020, 48(2), 739.
70 Bosisio R G, Spooner J, Grαnger J. Journal of Microwave Power, 1974, 9(4), 381.
71 Concha J L, Norambuena-Contreras J. Applied Thermal Engineering, 2020, 178, 115632.
[1] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[2] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[3] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[4] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[5] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[6] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 21110105-22.
[7] 宋卫民, 吴昊. 基于断裂力学的沥青混凝土抗裂性能与研究方法进展[J]. 材料导报, 2023, 37(16): 22050119-11.
[8] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[9] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[10] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[11] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[12] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[13] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[14] 李崇智, 牛振山, 吴慧华, 曹莹莹. 新型水泥基渗透结晶型防水剂的制备及性能[J]. 材料导报, 2021, 35(Z1): 216-219.
[15] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed