Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20070335-7    https://doi.org/10.11896/cldb.20070335
  高分子与聚合物基复合材料 |
基于多巴胺的自愈水凝胶研究进展
黄金鑫, 吴承伟, 余小刚, 马建立, 张伟
大连理工大学工程力学系,工业装备结构分析国家重点实验室,辽宁 大连 116024
Research Progress of Self-Healing Hydrogels Based on Dopamine
HUANG Jinxin, WU Chengwei, YU Xiaogang, MA Jianli, ZHANG Wei
State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 4718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自愈水凝胶可通过水凝胶网络中的可逆动态交联的重建,修复受损部位的结构和力学性能,因其具有与人类软组织相似的结构和性能,被广泛应用于生物医学领域。但面对人体内的复杂环境,自愈水凝胶在实际应用中仍然面临许多问题。作为生物材料,例如植入材料或医用辅料,常规自愈水凝胶仍缺乏与人体环境相适应的生物相容性、组织粘附性等性能。多巴胺(DA)水凝胶由于具有自愈性与多种生物特性(如组织粘附性、生物相容性、细胞粘附性等),不仅保障了力学性能的自愈,而且兼具其他性能以适应人体环境。首先,聚多巴胺中的高活性酚羟基与水凝胶高分子网络之间可以形成多种非共价协同作用,在断裂面实现可逆非共价键的重建,赋予多巴胺水凝胶优异的自愈性能,其次,聚多巴胺中的酚羟基可与生物组织表面发生共价或非共价相互作用,使水凝胶具有良好的组织粘附性,高活性酚羟基还可赋予水凝胶优越的细胞亲和力和细胞粘附性。可见,多巴胺的引入为自愈水凝胶提供了更加广阔的空间和巨大的发展潜力。
本文综述了多巴胺自愈水凝胶的最新研究进展,根据自愈条件的不同,从外援型自愈水凝胶和自主型自愈水凝胶两个方向分析其自愈机理,讨论了影响多巴胺自愈水凝胶自愈性能的主要因素,并对其自愈性能优化进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄金鑫
吴承伟
余小刚
马建立
张伟
关键词:  多巴胺  自愈合  水凝胶  自主型  外援型    
Abstract: Self-healing hydrogels can repair the structure and mechanical properties of damaged parts by reversible dynamic crosslinking in hydrogel networks. Owing to the similar structure and performance to human soft tissues, these hydrogels are widely used in the field of biomedicine. However, self-healing hydrogels still face many problems in practical applications due to the complex environment in the human body. When used as biomaterials, such as implant materials or medical accessories, conventional self-healing hydrogels still lack biocompatibility and tissue adhesion properties. In response to this, dopamine hydrogel combining self-healing properties with a variety of biological characteristics has been developed. These hydrogels not only have the self-healing of mechanical properties, but also have other properties to adapt to the human environment, such as tissue adhesion, biocompatibility, cell adhesion, etc. Firstly, a variety of non-covalent bondings can be formed between the highly active phenolic hydroxyl groups in the polydopamine and the hydrogel polymer network, and the reversible non-covalent bond can be reconstructed on the fracture surface, which makes dopamine hydrogels have excellent self-healing performance. Secondly, the free phenolic hydroxyl groups in the dopamine hydrogel interact with various bio-substrate surface covalently or non-covalently and thereby the hydrogel has good tissue adhesion performance. The highly active phenolic hydroxyl groups can also make dopamine hydrogels have superior cell affinity and cell adhesion properties. It can be seen that the introduction of dopamine provides huge potential for development of self-healing hydrogels.
This article reviews the latest research progress of dopamine self-healing hydrogels. According to different self-healing conditions, the self-hea-ling mechanism is analyzed from two directions, namely non-autonomic dopamine self-healing hydrogel and autonomous dopamine self-healing hydrogel. The main factors affecting the self-healing properties of dopamine self-healing hydrogels are analyzed, and the optimization of self-healing properties is prospected.
Key words:  dopamine    self-healing    hydrogel    autonomous    non-autonomic
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  O63  
基金资助: 国家重点研发计划项目(2018YFA0704103;2018YFA0704104);中央高校基本科研业务费项目(DUT21TD105)
通讯作者:  Wei.zhang@dlut.edu.cn   
作者简介:  黄金鑫,2015年6月毕业于吉林大学,获得工学硕士学位。现为大连理工大学运载工程与力学学部博士研究生,在吴承伟教授和张伟教授的指导下进行研究。目前主要研究领域为多巴胺自愈水凝胶。
张伟,大连理工大学,教授,博士研究生导师。1999年、2003年于大连理工大学分别获得学士和硕士学位,2008年于英国Leeds大学获得博士学位,之后在英国Surrey大学做博士后,目前在大连理工大学工程力学系生物与纳米力学实验室工作。主要从事生物医用水凝胶、自控温磁感应热疗技术等方面研究。以一作或通讯作者发表SCI论文60余篇,封面论文5篇,被引用1 500余次。第一发明人授权国家发明专利19项。主持国家重点研发计划项目课题1项,国家自然科学基金项目2项、其他省部级以上项目9项。
引用本文:    
黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
HUANG Jinxin, WU Chengwei, YU Xiaogang, MA Jianli, ZHANG Wei. Research Progress of Self-Healing Hydrogels Based on Dopamine. Materials Reports, 2022, 36(8): 20070335-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070335  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20070335
1 Imato K, Nishihara M, Kanehara T, et al. Angewandte Chemie International Edition,2012,51(5),1138.
2 Sun C Y, Jia H Y, Lei K, et al. Polymer,2019,160,246.
3 Zhang Y L, Lei T, Li S X, et al. Biomacromolecules,2011,12(8),2894.
4 Nakahata M, Takashima Y, Yamaguchi H, et al. Nature Communications,2011,2(1),511.
5 Algi M P, Okay O. European Polymer Journal,2014,59,113.
6 Wei H B, Du S M, Liu Y, et al. Chemical Communications,2014,50(12),1447.
7 Phadke A, Zhang C, Arman B, et al. PNAS,2012,109(12),4383.
8 Han, Y Y, Wu X D, Zhang X X, et al. ACS Applied Materials & Interfaces,2017,9(23), 20106.
9 Lu S Y, Gao C M, Xu X B, et al. ACS Applied Materials & Interfaces,2015,7(23),13029.
10 Lu S Y, Bai X, Liu H D, et al. Journal of Materials Chemistry B,2017,5(20),3739.
11 Qu J, Zhao X, Liang Y P, et al. Biomaterials,2018,183,185.
12 Duarte A P, Coelho J F, Bordado J C, et al. Progress in Polymer Science,2012,37(8),1031.
13 Ferreira P J, Pereira R, Coelho J F J, et al. International Journal of Biological Macromolecules,2007,40(2),144.
14 Huang W J, Wang Y X, Chen Y, et al. Advanced Healthcare Materials,2016,5(21),2813.
15 Chan B K, Wippich C C, Wu C J, et al. Macromolecular Bioscience,2012,12(11),1490.
16 Li L, Smitthipong W, Zeng H B. Polymer Chemistry,2015,6(3),353.
17 Zhang H J, Xia H S, Zhao Y. ACS Macro Letters,2012,1(11),1233.
18 Talebian S, Mehrali M, Taebnia N, et al. Advanced Science,2019,6(16),1801664.
19 Robby A I, Lee G, Park S Y.Sensors and Actuators B: Chemical,2019,297,126783.
20 Yang L, Wang Z H, Fei G X, et al. Macromolecular Rapid Communications,2017,38(23),1700421.
21 Han L L, He Y, An R, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,569,18.
22 Han L L, Liu M F, Yan B, et al. Materials Science and Engineering: C,2020,109,110567.
23 Han L, Lu X, Wang M H, et al. Small,2017,13(2),1601916.
24 Han L, Zhang Y N, Lu X, et al. ACS Applied Materials & Interfaces,2016,8(42),29088.
25 Feng Z B, Zuo H L, Hu J, et al. Industrial and Engineering Chemistry Research,2020,59(1),166.
26 Yang L, Lu X L, Wang Z H, et al. Polymer Chemistry,2018,9(16),2166.
27 Liu Y L, Ai K L, Liu J H, et al. Advanced Materials,2013,25(9),1353.
28 Li W, Wang J S, Ren J S, et al. Advanced Materials,2013,25(46),6737.
29 Kurapati R, Raichur A M. Chemical Communications,2013,49(7),734.
30 Hohlbein N, Shaaban A, Schmidt A M. Polymer,2015,69,301.
31 Zhang X, Xu J Y, Lang C, et al. Biomacromolecules,2017,18(6),1885.
32 Zeng H B, Hwang D S, Israelachvili J N, et al. PNAS,2010,107(29),12850.
33 Liu Y L, Ai K L, Lu L H. Chemical Reviews,2014,114(9),5057.
34 Andersen N H, Harrington M J, Birkedal H, et al. PNAS,2011,108(7),2651.
35 Zhang Z, Gao Z L, Wang Y T, et al. Macromolecules,2019,52(6),2531.
36 Azevedo S, Costa A, Andersen A, et al. Advanced Materials,2017,29(28),1700759.
37 Hou S, Ma P X. Chemistry of Materials,2015,27(22),7627.
38 Krogsgaard M, Behrens M A, Pedersen J S, et al. Biomacromolecules,2013,14(2),297.
39 Wang W N, Xu Y S, Li A, et al. RSC Advances,2015,5(82),66871.
40 Li Z W, Lu W, Ngai T, et al. Polymer Chemistry,2016,7(34),5343.
41 Messersmith P B, He L H, Fullenkamp D E. Chemical Communications,2011,47(26),7497.
42 Xia Y M, Wu Y P, Yu T, et al. ACS Applied Materials & Interfaces,2019,11(23),21117.
43 Xu J J, Wang G Y, Wu Y F, et al. ACS Applied Materials & Interfaces,2019,11(28),25613.
44 Zhou H W, Li S L, Liu H B, et al. Macromolecular Materials and Engineering,2020,305(2),1900621.
45 Liao M H, Wan P B, Wen J R, et al. Advanced Functional Materials,2017,27(48),1703852.
46 Zhao X, Zhang M Y, Guo B L, et al. Journal of Materials Chemistry B,2016,4,6644.
47 Jing X, Mi H Y, Napiwocki B N, et al. Carbon,2017,125,557.
48 Yan S F, Wang W D, Li X, et al. Journal of Materials Chemistry B,2018,6(40),6377.
49 Han L, Yan L W,Wang K F, et al. NPG Asia Materials,2017,9(4),e372.
50 Jing X, Mi H Y, Lin Y J, et al. ACS Applied Materials & Interfaces,2018,10(24),20897.
51 Wang C Y, Zhao N Y, Yuan W Z. ACS Applied Materials & Interfaces,2020,12(8),9118.
52 Lee H, Scherer N F, Messersmith P B. PNAS,2006,103(35),12999.
53 Saleem M, Abdullah R, Ali A, et al. Bioorganic and Medicinal Chemistry,2014,22,2045.
54 Han L, Lu X, Liu K Z, et al. ACS Nano,2017,11(3),2561.
55 He X Y, Liu L Q, Han H M, et al. Macromolecules,2019,52(1),72.
56 Chen T, Chen Y J, Rehman H U, et al. ACS Applied Materials & Interfaces,2018,10(39),33523.
[1] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[2] 胡丹娜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 生理pH下可控释放胰岛素的温度/葡萄糖双响应可注射复合水凝胶[J]. 材料导报, 2022, 36(3): 21040234-7.
[3] 李崇智, 牛振山, 吴慧华, 曹莹莹. 新型水泥基渗透结晶型防水剂的制备及性能[J]. 材料导报, 2021, 35(Z1): 216-219.
[4] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[5] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[6] 罗涛, 马爱洁, 白海燕, 程勇博, 周宏伟. 磁诱导高取向水凝胶的构筑及功能[J]. 材料导报, 2021, 35(5): 5206-5213.
[7] 毛杰, 戴静波, 周俊慧, 张新波, 田宗明, 张斌, 秦永华. 聚乙烯醇/乙二醇/氧化石墨烯/聚苯胺导电复合物水凝胶的制备及性能研究[J]. 材料导报, 2021, 35(24): 24172-24176.
[8] 朱金龙, 郑聚成, 张定军. 前端聚合法制备聚(N-乙烯基己内酰胺-co-N,N-二甲基丙烯酰胺)智能水凝胶[J]. 材料导报, 2021, 35(16): 16149-16154.
[9] 孙会娟. UHMWPE人工髋关节的接枝改性进展[J]. 材料导报, 2021, 35(11): 11208-11214.
[10] 王毓, 任俊鹏, 赵君, 周进康, 李小平. 磁性壳聚糖半互穿热膨胀水凝胶的制备及对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2021, 35(10): 10205-10210.
[11] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[12] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[13] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[14] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[15] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed