Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7096-7106    https://doi.org/10.11896/cldb.20010064
  无机非金属及其复合材料 |
基于水泥基材料组分的自愈合研究进展
石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙
湖南大学土木工程学院,长沙 410082
Advances in Autogenous Self-healing of Cementitious Materials
SHI Da, SHI Caijun, WU Zemei, ZHANG Zuhua, LI Kai, LIU Yiwei, HOU Sailong
College of Civil Engineering,Hunan University,Changsha 410082, China
下载:  全 文 ( PDF ) ( 3102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料自愈合技术能有效愈合微裂缝,降低工程结构维护成本,实现绿色建筑材料可持续发展。根据采用修复材料的不同以及相应的自愈合机理,其可分为聚合物自愈合、电化学自愈合、微生物自愈合和依靠水泥基材料组分的自愈合等。其中依靠水泥基材料组分的物理和化学特性实现的自修复操作方便、成本低、简单可行,此方法被称作水泥基材料自生自愈合(Autogenous self-healing)。本文综述了近年来水泥基材料自生自愈合的研究进展,系统归纳了几类改善典型自生自愈合材料性能的措施,包括采用结晶剂和膨胀剂、矿物掺合料、纤维、高吸水性聚合物等,分别探讨了上述措施的自修复机理和对混凝土的自愈合效果。最后指出了水泥基材料自生自愈合技术存在的问题,提出改进措施,并展望了其发展趋势和应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石达
史才军
吴泽媚
张祖华
李凯
刘翼玮
侯赛龙
关键词:  水泥基材料  自愈合  自愈合性能  自愈合机理    
Abstract: Self-healing technique of cement-based materials can be used to effectively heal micro-cracks, which reduces maintenance cost of enginee-ring structures and realize sustainable development of green building materials. According to the used repair materials and relevant self-hea-ling mechanisms, it can be divided into different categories, including polymer self-healing, electrochemical self-healing, microbial self-healing, and self-healing based on physical and chemical properties of cementitious materials'components. The autogenous self-healing that relied on physical and chemical properties of components of cement-based materials is considered to be an easily-implemented, low-cost, simple and feasible approach.    This paper reviews the research progress of autogenous self-healing of cementitious materials in recent years. Several typical methods for improving self-healing properties are summarized, which include the usage of crystalline and expansive agents, mineral admixtures, fibers, and superabsorbent polymer. The mechanisms and healing effects of these self-healing techniques are discussed, respectively. The existing problems and improvements of this approach are addressed, its development trend and future applications are finally presented.
Key words:  cementitious materials    self-healing    self-healing capacity    self-healing mechanism
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TU528.1  
基金资助: 国家重点研发计划(2018YFC0705400);湖南省研究生科研创新项目(CX20190291)
作者简介:  石达,2017年毕业于长沙理工大学,获得工学学士学位。现为湖南大学土木工程学院研究生,在史才军教授的指导下进行研究。目前主要研究领域为超高性能混凝土的自愈合性能。
史才军,现任湖南大学和中国建筑材料研究院土木工程学院教授,第二批国家“千人计划”特聘专家,湖南省特聘专家,亚洲混凝土联合会副主席,Taylor and Francis 学术期刊Journal of Sustainable Cement-based Materials创刊主编,Journal of Ceramics in Modern Technologies共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete ResearchCement and Concrete Composites、Construction and Building Materials、Taylor & Francis学术期刊Journal of Structural Integrity and Maintenance、西班牙Materiales de Construccion、《材料导报》《建筑材料学报》《重庆交通大学学报》及《中国水泥》等期刊编委。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2014年获湖南省“潇湘友谊”奖。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001年、2007年和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士(Fellow)。
引用本文:    
石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
SHI Da, SHI Caijun, WU Zemei, ZHANG Zuhua, LI Kai, LIU Yiwei, HOU Sailong. Advances in Autogenous Self-healing of Cementitious Materials. Materials Reports, 2021, 35(7): 7096-7106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010064  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7096
1 Yun M L, Li V C. Cement & Concrete Composites, 1997,19(4),373.
2 Ohama Y.Construction and Building Materials, 1996,10(1),77.
3 Altin S, Tankut T, Anil , et al. Engineering Structures, 2003,25(9),1217.
4 Huang H, Ye G, Qian C, et al. Materials & Design, 2016,92,499.
5 Yildirim G, Keskin Ö K, Keskin S B, et al. Construction and Building Materials, 2015,101,10.
6 Wu M, Johannesson B, Geiker M. Construction and Building Materials, 2012,28(1),571.
7 Snoeck D, De Belie N. Construction and Building Materials, 2015,95,774.
8 Tittelboom K, Belie N. Materials, 2013,6,2182.
9 Chu H, Jiang L, Xiong C, et al. Construction and Building Materials, 2014,73,58.
10 Tziviloglou E, Pan Z, Jonkers H M, et al. Journal of Advanced Concrete Technology, 2017,15(9),536.
11 Wang X, Xing F, Zhang M, et al. Materials, 2017,6(9),4064.
12 Gupta S, Pang S D, Kua H W. Construction and Building Materials, 2017,146,419.
13 Hearn N. Materials & Structures, 1998,31(8),563.
14 Nataliya H. ACI Materials Journal, 1999,96(2),183.
15 Hearn N, Morley C T. Materials and Structures, 1997,30(7),404.
16 de Nardi C, Cecchi A, Ferrara L. Key Engineering Materials, 2017,747,465.
17 Jiang Z, Li W, Yuan Z. Cement and Concrete Composites, 2015,57,116.
18 Sahmaran M, Yildirim G, Erdem T K. Cement and Concrete Composites, 2013,35(1),89.
19 Park B, Choi Y C. Construction and Building Materials, 2018,189,1054.
20 Ferrara L, Krelani V, Carsana M. Construction and Building Materials, 2014,68,535.
21 Sisomphon K, Copuroglu O, Koenders E A B. Cement and Concrete Composites, 2012,34(4),566.
22 Qureshi T, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2019,194,266.
23 Qureshi T, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2018,192,768.
24 Ahn T, Kishi T. Journal of Advanced Concrete Technology, 2010,8(2),171.
25 Yang Y, Lepech M D, Yang E, et al. Cement and Concrete Research, 2009,39(5),382.
26 Jaroenratanapirom D, Sahamitmongkol R. In:The 6th Annual Concrete Conference.Phetchaburi, Thailand,2010,pp. 171.
27 Yildirim G, Sahmaran M, Balcikanli M, et al. Construction and Building Materials, 2015,85,217.
28 Li G, Huang X, Lin J, et al. Construction and Building Materials, 2019,200,36.
29 Zha Y, Yu J, Wang R, et al. Construction and Building Materials, 2018,190,308.
30 Snoeck D, Steuperaert S, Van Tittelboom K, et al. Cement and Concrete Research, 2012,42(8),1113.
31 Van Tittelboom K,Gruyaert E, Rahier H, et al. Construction and Buil-ding Materials, 2012,37,349.
32 Huang H, Ye G, Damidot D. Cement and Concrete Research, 2014,60,68.
33 Huang H, Ye G, Damidot D. Cement and Concrete Research, 2013,52(10),71.
34 Ferrara L, Krelani V, Moretti F, et al. Cement & Concrete Composites, 2017,83.
35 Yang Y, Yang E, Li V C. Cement and Concrete Research, 2011,41(2),176.
36 Li V, Wang S X, Wu C.ACI Materials Journal, 2001,98,483.
37 Li V, Wu C, Wang S, et al. ACI Materials Journal, 2011,75(2),251.
38 Li V C, Lim Y M, Chan Y. Composites Part B: Engineering, 1998,29(6),819.
39 Snoeck D, Smetryns P, De Belie N. Biosystems Engineering, 2015,139,87.
40 Mignon A, Snoeck D, Schaubroeck D, et al. Reactive and Functional Polymers, 2015,93,68.
41 Mignon A. Effect of pH-responsive superabsorbent polymers on the self-sealing and self-healing of cracks in concrete. Ph.D.Thesis,Ghent University, Belgium,2016.
42 Termkhajornkit P, Nawa T, Kurumisawa K. Cement and Concrete Composites, 2006,28(9),781.
43 Powers T C, Brownyard T L. Concrete International, 2003,25(9),278.
44 Igarashi S, Kawamura M, Watanabe A.Cement and Concrete Composites, 2004,26(8),977.
45 Wu Z H, Wei Y. Acta Materiae Compositae Sinica, 2020,3,1.
46 Scrivener K L, Füllmann T, Gallucci E, et al. Cement and Concrete Research, 2004,34(9),1541.
47 Sellevold E J, Jacobsen S, Matala S.Cement and Concrete Research, 1996,26(6),919.
48 Jacobsen S, Sellevold E J. Cement and Concrete Research, 1996,26(1),55.
49 Jacobsen S, Marchand J, Hornain H. Cement and Concrete Research, 1995,25(8),1781.
50 Bentz D P, Haecker C J. Cement & Concrete Research, 1999,29(4),615.
51 Rahmani H, Bazrgar H. Magazine of Concrete Research, 2015,67(9-10),476.
52 Li Z Q, Zhou Z H. In:The First Annual Meeting of Cement Branch of the Chinese Ceramic Society. Jiaozuo, China,2009,pp. 125.
53 Zhou S X, Chen Y M. Bulletin of the Chinese Ceramic Society, 2006,82(5-7),351.
54 Termkhajornkit P, Nawa T, Yamashiro Y, et al. Cement and Concrete Composites, 2009,31(3),195.
55 Şahmaran M, Keskin S B, Ozerkan G, et al. Cement and Concrete Composites, 2008,30(10),872.
56 ACI C. Chemical Admixtures for Concrete, ACI 212.3R-91[J]. Concrete International, 2010,15(10).
57 Roig-Flores M, Pirritano F, Serna P, et al. Construction and Building Materials, 2016,114,447.
58 Lee H X D, Wong H S, Buenfeld N R. Advances in Applied Ceramics, 2010,109(5),296.
59 Kim J S S E. In:The 3rd International Conference on Self-Healing Mate-rials. Bath, UK, 2011,pp. 365.
60 Snoeck D, Dewanckele J, Cnudde V, et al. Cement and Concrete Composites, 2016,65,83.
61 Snoeck D, Belie N. Journal of Materials in Civil Engineering, 2015,115(7),1.
62 Yao Y, Zhu Y, Yang Y. Construction and Building Materials, 2012,28(1),139.
63 Li M. Multi-scale design for durable repair of concrete structures. Ph.D.Thesis,The University of Michigan,USA,2009.
64 Wang J, Guo J. Cement and Concrete Composites, 2018,88,17.
65 Homma D, Mihashi H, Nishiwaki T. Journal of Advanced Concrete Technology, 2009,7(2),217.
66 Nishiwaki T, Koda M, Yamada M, et al. Journal of Advanced Concrete Technology, 2012,10(6),195.
67 Hung C, Su Y. Construction and Building Materials, 2016,118,194.
68 Yildirim G, Khiavi A H, Yeşilmen S, et al. Cement and Concrete Composites, 2018,87,172.
69 Guo J, Wang J, Wu K. Construction and Building Materials, 2019,204,342.
70 Kim S, Yoo D, Kim M, et al. Cement and Concrete Composites, 2019,104,103.
71 Granger S, Loukili A, Pijaudier-Cabot G, et al. Cement and Concrete Research, 2007,37(4),519.
72 Kwon S, Nishiwaki T, Kikuta T, et al. Experimental study on self-hea-ling capability of cracked ultra-high-performance hybrid-fiber-reinforced cementitious composites. Masters Thesis, Japan, 2013.
73 Maes M, Snoeck D, De Belie N. Construction and Building Materials, 2016,115,114.
74 Snoeck D, Van Tittelboom K, Steuperaert S, et al. Journal of Intelligent Material Systems and Structures, 2012,25(1),13.
75 Cuenca E, Tejedor A, Ferrara L. Construction and Building Materials, 2018,179,619.
76 Suleiman A R, Nehdi M L.Cement and Concrete Research, 2018,111,197.
77 Tomczak K, Jakubowski J. Construction and Building Materials, 2018,187,149.
78 Palin D, Wiktor V, Jonkers H M. Cement and Concrete Research, 2015,73,17.
79 Van Tittelboom K, Wang J, Araujo M, et al. Construction & Building Materials, 2016,107,125.
80 Ferrara L, Krelani V, Moretti F. Cement and Concrete Composites, 2016,73,299.
[1] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[2] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[3] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[4] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[5] 杨海涛, 刘娟红, 纪洪广, 周昱程. 利用优化的水渗透试验研究SAPs的裂缝愈合机理[J]. 材料导报, 2020, 34(8): 8188-8193.
[6] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[7] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[8] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[9] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[10] 刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
[11] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[12] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[13] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[14] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[15] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed