Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7107-7113    https://doi.org/10.11896/cldb.19100048
  无机非金属及其复合材料 |
用自然纤维增强地聚物材料:综述
杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海
西南交通大学土木工程学院,成都 610031
Reinforced Geopolymer Materials with Natural Fibers: a Review
YANG Shiyu, ZHAO Renda, ZENG Xianshuai, JIA Wentao, JIN Hesong, LI Fuhai
School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 2343KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自然纤维是一种来源广泛、低价环保的可再生资源,用自然纤维替代合成纤维制备复合材料的研究受到了人们的普遍关注。另外,地聚物是一种新兴的无机硅铝酸盐胶凝材料,被认为是普通硅酸盐水泥的理想替代品,同样备受瞩目。地聚物混凝土具有早期强度高、防火、耐高温、绿色环保及有效固定重金属等优点,但是其脆性大、抗裂性差。在地聚物混凝土中掺入自然纤维具有轻质、保温隔热及延缓混凝土开裂等特性,而且对生态友好,可以促进资源可持续发展,具有较好的应用前景。为了确定自然纤维对地聚物混凝土结构的增强效果和机理,本文评述了近期国内外有关自然纤维对地聚物混凝土力学性能影响的研究报道。首先总结了自然纤维的来源、处理方式及基本力学性质;其次详述了自然纤维对碱激发粉煤灰/矿渣/偏高岭土地聚物复合材料力学性能影响的相关研究;最后讨论了自然纤维增强地聚物混凝土的耐热性,并对今后需进一步研究的相关问题提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨世玉
赵人达
曾宪帅
贾文涛
靳贺松
李福海
关键词:  自然纤维  植物纤维  碱激发  地聚物混凝土    
Abstract: Natural fiber is a renewable resource with a wide range of sources, low price and environmental protection. The research on the synthesis of composite materials with natural fiber instead of synthetic fiber has attracted widespread attention. On the other hand, geopolymer is a new inorganic silicate aluminate cementitious material, which is considered as an ideal substitute for ordinary Portland cement. Geopolymer concrete has the advantages of high early strength, fire prevention, high temperature resistance, environmental protection and effective fixation of heavy metals. Like ordinary concrete, it has high brittleness and poor crack resistance. Natural fiber reinforced geopolymer concrete has the characteristics of light weight, heat insulation and delaying concrete cracking. Moreover, it is environmentally friendly, can promote the sustainable development of resources, and has a good application prospect. The properties of natural fibers are quite different. In order to grasp the reinforcing effect and mechanism of the geopolymer concrete, this paper summarizes the recent research reports on the influence of natural fibers on the mechanical properties of geopolymer concrete at home and abroad. Firstly, the sources, treatment methods and basic mechanical properties of natural fibers are summarized. Then, the effects of natural fibers on the mechanical properties of alkali-activated fly ash/slag/metakaolin geopolymer composites are discussed in detail. Finally, the heat resistance of natural fiber reinforced geopolymer concrete is discussed, and some suggestions for further research are put forward.
Key words:  natural fibers    plant fibers    alkali activated    geopolymer concrete
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TU52  
基金资助: 国家自然科学基金(51778531);四川省科技计划(2019YJ0219)
作者简介:  杨世玉,2016年6月毕业于西南交通大学,获得工学硕士学位。现为西南交通大学土木工程学院博士研究生,在赵人达教授和李福海高级工程师的指导下进行研究。目前主要研究领域为新型混凝土材料及结构的力学行为。
李福海,西南交通大学土木工程学院高级工程师,工学博士,硕士研究生导师,2003年本科毕业于西南交通大学土木工程学院,2012年在西南交通大学桥梁与隧道工程专业获得博士学位。国家级土木工程实验教学示范中心副主任,西南交通大学土木工程学院建筑材料实验室副主任,四川省学术与技术带头人后备人选,中国混凝土与水泥制品协会教育与人力资源委员会理事,四川省建筑业协会混凝土分会理事。主要从事水泥混凝土材料及其耐久性的研究工作。近年来,在水泥混凝土材料及其耐久性领域发表论文60余篇。
引用本文:    
杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
YANG Shiyu, ZHAO Renda, ZENG Xianshuai, JIA Wentao, JIN Hesong, LI Fuhai. Reinforced Geopolymer Materials with Natural Fibers: a Review. Materials Reports, 2021, 35(7): 7107-7113.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100048  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7107
1 Xu Q, Wu N S, Su Z G, et al. Fujian Building Materials, 2018(3), 20(in Chinese).
徐青,吴能森,苏忠高,等. 福建建材, 2018(3), 20.
2 Coutts R S P. Cement and Concrete Composites, 2005, 27(5), 518.
3 Agopyan V, Savastano Jr H, John V M, et al. Cement and Concrete Composites, 2005, 27(5), 527.
4 Cao Y, Wu Y. Journal of Central South University of Technology, 2008, 15(1), 564.
5 Lee B H, Kim H J, Yu W R. Fibers and Polymers, 2009, 10(1), 83.
6 Li X, Tabil L G, Panigrahi S. Journal of Polymers and the Environment, 2007, 15(1), 25.
7 Mehta G, Mohanty A K, Thayer K, et al. Journal of Polymers and the Environment, 2005, 13(2), 169.
8 John V M, Cincotto M A, Sjöström C, et al. Cement and Concrete Composites, 2005, 27(5), 565.
9 Joaquim A P, Tonoli G H D, Santos S F D, et al. Materials Research, 2009, 12(3), 305.
10 Tonoli G H D, Joaquim A P, Arsène M A, et al. Materials and Manufacturing Processes, 2007, 22(2), 149.
11 Mohamed M A S, Ghorbel E, Wardeh G. Construction and Building Materials, 2010, 24(12), 2473.
12 Onuaguluchi O, Panesar D K, Sain M. Construction and Building Mate-rials, 2014, 63, 119.
13 Mohammed M S, Ahmed A E S I, Osman R M. Pigment & Resin Technology, 2014, 43(2), 104.
14 Wei J, Meyer C. Corrosion Science, 2014, 88, 118.
15 de Almeida Melo Filho J, de Andrade Silva F.Cement and Concrete Composites, 2013, 40, 30.
16 Sedan D, Pagnoux C, Smith A, et al. Journal of the European Ceramic Society, 2008, 28(1), 183.
17 Zhou X, Ghaffar S H, Dong W, et al. Materials & Design, 2013, 49, 35.
18 Kriker A, Debicki G, Bali A, et al. Cement and Concrete Composites, 2005, 27(5), 554.
19 Andiç-Çakir Ö, Sarikanat M, Tüfekçi H B, et al. Composites Part B, Engineering, 2014, 61, 49.
20 Khorami M, Ganjian E. Construction and Building Materials, 2011, 25(9), 3661.
21 Juarez C, Duran A, Valdez P, et al. Building and Environment, 2007, 42(3), 1151.
22 Jarabo R, Monte M C, Fuente E, et al. Industrial Crops and Products, 2013, 43, 832.
23 Agarwal A, Nanda B, Maity D. Construction and Building Materials, 2014, 71, 610.
24 Rahman M M, Rashid M H, Hossain M A, et al. International Journal of Engineering & Technology, 2011, 11(4), 142.
25 Arpitha G R, Sanjay M R, Yogesha B. Colloid and Surface Science, 2017, 2(2), 59.
26 Khan M Z R, Srivastava S K, Gupta M K. Journal of Reinforced Plastics and Composites, 2018, 37(24), 1435.
27 Ahmad F, Choi H S, Park M K. Macromolecular Materials and Enginee-ring, 2015, 300(1), 10.
28 Malenab R, Ngo J, Promentilla M. Materials, 2017, 10(6), 579.
29 Haque M, Rahman R, Islam N, et al. Journal of Reinforced Plastics and Composites, 2010, 29(15), 2253.
30 Huda M S, Drzal L T, Mohanty A K, et al. Composites Science and Technology, 2006, 66(11-12), 1813.
31 Kumar R, Obrai S, Sharma A. Der Chemica Sinica, 2011, 2(4), 219.
32 Bos H L, Van Den Oever M J A, Peters O. Journal of Materials Science, 2002, 37(8), 1683.
33 Pickering K L, Beckermann G W, Alam S N, et al. Composites Part A, Applied Science and Manufacturing, 2007, 38(2), 461.
34 Summerscales J, Dissanayake N P J, Virk A S, et al. Composites Part A, Applied Science and Manufacturing, 2010, 41(10), 1329.
35 Abdollah M F B, Shuhimi F F, Ismail N, et al. Materials & Design, 2015, 67, 577.
36 Shah D U, Porter D, Vollrath F. Composites Science and Technology, 2014, 101, 173.
37 Cheng S, Lau K, Liu T, et al. Composites Part B, Engineering, 2009, 40(7), 650.
38 Reis P J. Australian Journal of Agricultural Research, 1992, 43(6), 1337.
39 Rowell R M, Sanadi A R, Caulfield D F, et al. Lignocellulosic-plastics Composites, 1997, 13, 23.
40 Alomayri T, Shaikh F U A.Materials & Design, 2014, 57, 360.
41 Alomayri T, Low I M. Journal of Asian Ceramic Societies, 2013, 1(1), 30.
42 Alomayri T, Shaikh F U A, Low I M. Composites Part B, Engineering, 2014, 60, 36.
43 Alomayri T, Assaedi H, Shaikh F U A, et al. Journal of Asian Ceramic Societies, 2014, 2(3), 223.
44 Alomayri T, Shaikh F U A. Journal of Materials Science, 2013, 48(19), 6746.
45 Alomayri T, Vickers L, Shaikh F U A, et al. Journal of Advanced Ceramics, 2014, 3(3), 184.
46 Sarmin S N. Key Engineering Materials, 2017, 723, 74.
47 Chen R, Ahmari S, Zhang L. Journal of Materials Science, 2014, 49(6), 2548.
48 Wu H C, Sun P. Construction and Building Materials, 2007, 21(1), 211.
49 Duan P, Yan C, Zhou W, et al. Construction and Building Materials, 2016, 111, 600.
50 Aigbomian E P, Fan M. Construction and Building Materials, 2013, 40, 361.
51 Ye H, Zhang Y, Yu Z. BioResources, 2018, 13(2), 2499.
52 Furtos G, Silaghi-Dumitrescu L, Pascuta P, et al. Journal of Natural Fibers, 2021, 18(2), 285.
53 Korniejenko K, Frączek E, Pytlak E, et al. Procedia Engineering, 2016, 151, 388.
54 Korniejenko K, Łach M, Mikuła J. In: The 10th International Confe-rence on Composite Science and Technology. Canada, 2018, pp. 135.
55 Korniejenko K, Łach M, Hebdowska-Krupa M, et al. In: IOP Confe-rence Series Materials Science and Engineering. Thailand, 2018, pp. 379.
56 Wattanasiriwech D, Munmueangkham T, Wattanasiriwech S. In: The 2018 World Congress on Advances in Civil, Environmental & Materials Research. Korea, 2018, pp. 107.
57 Musil S S, Keane P F, Kriven W M. In: Strategic Materials and Computational Design IV-37th International Conference on Advanced Ceramics and Composites. USA, 2014, pp. 123.
58 Janne Pauline S N, Michael Angelo B P. Matec Web of Conferences, 2018, 156(2), 05018.
59 Sankar Kaushik, Ribeiro R A S, Ribeiro M G S, et al. Journal of the American Ceramic Society, 2017, 100(1), 49.
60 Bentur A, Mindess S. Fibre reinforced cementitious composites, CRC Press, USA, 2006.
61 Kroehong W, Jaturapitakkul C, Pothisiri T, et al. Arabian Journal for Science and Engineering, 2018, 43(10), 5215.
62 Li Z, Zhang L.Fly ash-based geopolymer with kappa-carrageenan biopolymer, Woodhead Publishing, UK, 2016.
63 Zulfiati R, Saloma, Idris Y. Journal of Physics Conference Series, 2019, 1198(8), 082021.
64 Amalia F, Akifah N. IOP Conference Series: Materials Science and Engineering, 2017, 551, 012014.
65 Pratiwi K I. Matec Web of Conferences, 2016, 78, 01025.
66 Ribeiro R A S, Ribeiro M G S, Sankar K, et al. Construction and Buil-ding Materials, 2016, 123, 501.
67 Ribeiro R A S, Ribeiro M G S, Sankar K, et al. Developments in Strategic Ceramic Materials II, 2017, 37(7), 135.
68 Sankar K, Sá Ribeiro R A, Sá Ribeiro M G, et al. Journal of the American Ceramic Society, 2017, 100(1), 49.
69 Alzeer M, MacKenzie K. Applied Clay Science, 2013, 75, 148.
70 Alshaaer M, Mallouh S A, Al-Faiyz Y, et al. Applied Clay Science, 2017, 143, 125.
71 Huang C J. Comperssive strengthes and microstructural characteristics of fiber reinforced geopolymer. Master's Thesis, Zhejiang University of Technology, China, 2011(in Chinese).
黄彩菊. 纤维对地聚合物抗压强度的影响及机理分析. 硕士学位论文,浙江工业大学, 2011.
72 Chen L. Preliminary research on heat preservation and environmental stability of straw-geopolymer. Master's Thesis, Zhejiang University of Technology, China, 2012(in Chinese).
陈亮. 秸秆地聚合物保温性及环境稳定性的初步研究. 硕士学位论文,浙江工业大学, 2012.
73 Zhang M Y. Study on synthesis, characterization and mechanical perfor-mances of geopolymer-based fiber composites. Master's Thesis, Guangxi Normal University, China, 2017(in Chinese).
张明燕. 地聚物基植物纤维复合材料的合成、表征及其力学性能研究.硕士学位论文,广西师范学院, 2017.
74 Wei S J, Tan J L, Lu W L, et al. Solid State Phenomena, 2018, 281, 266.
75 Trindade A C C, Arêas I O M, Almeida D C T, et al. In: International Conference on Strain-Hardening Cement-Based Composites. Dordrecht, 2017, pp. 383.
76 DE Andrade Silva F, Borges P H R, Trindade A C C. Advances in Civil Engineering Materials, 2019, 8(3),361.
77 Reis J M. Advanced Materials Research, 2013, 687, 490.
78 Trindade A C C, Borges P H R, de Andrade Silva F. Materials Today, Proceedings, 2019, 8, 753.
79 Silva A. In: 4th Brazilian Conference on Composite Materials. Rio de Janeiro, 2018, pp. 1.
80 Trindade A C C, Alcamand H A, Borges P H R, et al. Ceramic and Science Proceedings, 2017, 38(3), 215.
81 Trindade A C C, Alcamand B H A, Borges B P H R, et al. Advances in Materials Science for Environmental and Energy Technologies VI, Ceramic Transactions, 2017, 262, 85.
82 da Silva Alves L C, dos Reis Ferreira R A, Machado L B, et al. Indust-rial Crops and Products, 2019, 139, 111551.
83 Assaedi H, Alomayri T, Shaikh F U A, et al. Journal of Advanced Ceramics, 2015, 4(4), 272.
84 Alzeer M, MacKenzie K. Applied Clay Science, 2013, 75, 148.
85 Teixeira-Pinto A, Varela B, Shrotri K, et al. Ceramic Engineering and Science Proceedings, 2007, 28(9), 337.
86 Trindade A C, Alcamand H, Ribeiro Borges P, et al. Journal of Ceramic Science and Technology, 2017, 8, 389.
87 Giancaspro J, Papakonstantinou C, Balaguru P. Composites Part B, Engineering, 2009, 40(3), 206.
88 Giancaspro J, Papakonstantinou C, Balaguru P. Composites Science and Technology, 2008, 68(7), 1895.
89 Oh R O, Cha S S, Park S Y, et al. Paddy and Water Environment, 2014, 12(1), 149.
90 Taveri G, Bernardo E, Dlouhy I. Materials, 2018, 11(12), 2395.
91 Yan L, Kasal B, Huang L. Composites Part B, Engineering, 2016, 92, 94.
92 Alzeer M, MacKenzie K J D. Journal of Materials Science, 2012, 47(19), 6958.
93 Natali Murri A, Medri V, Landi E. Journal of the American Ceramic Society, 2017, 100(7), 2822.
94 Natali Murri A, Papa E, Medri V, et al. In: Strategic Materials and Computational Design V: the 38th International Conference on Advanced Ceramics and Composites. USA, 2014, pp. 79.
95 Silva F J, Thaumaturgo C. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(2), 167.
96 Silva F J, Thaumaturgo C. In: 11th International Congress on the Che-mistry of Cement (ICCC). South Africa, 2003, pp.103.
97 Kinnunen P, Yliniemi J, Talling B, et al. Journal of Material Cycles and Waste Management, 2017, 19(3), 1220.
98 Tan J, Lu W, Huang Y, et al. Construction and Building Materials, 2019, 225, 772.
[1] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[2] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[3] 王永宝, 原元, 赵人达, 张晋杰. 赤泥地聚物混凝土力学性能研究现状及发展趋势[J]. 材料导报, 2020, 34(15): 15102-15109.
[4] 孙道胜, 叶哲, 刘开伟, 王爱国, 管艳梅, 陈东. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067.
[5] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[6] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[7] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[8] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[9] 史才军, 张留洋, 张健, 李宁, 欧志华. 碱激发材料氯离子传输性能测试方法及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 95-100.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed