Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7114-7120    https://doi.org/10.11896/cldb.19110208
  金属与金属基复合材料 |
增材制造金属点阵多孔材料研究进展
杨鑫1, 马文君1, 王岩2, 刘世锋2, 张兆洋1, 王婉琳1, 王犇1, 汤慧萍3
1 西安理工大学材料科学与工程学院, 西安 710048
2 西安建筑科技大学冶金工程学院, 西安 710055
3 西北有色金属研究院,金属多孔材料国家重点实验室, 西安 710016
Research Progress of Metal Lattice Porous Materials for Additive Manufacturing
YANG Xin1, MA Wenjun1, WANG Yan2, LIU Shifeng2, ZHANG Zhaoyang1, WANG Wanlin1, WANG Ben1, TANG Huiping3
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 School of Metallurgical Engineering, Xi'an University of Architecture and Technology,Xi'an 710055, China
3 State Key Laboratory of Porous Metal Materials, Northwest Institute of Nonferrous Metals, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 5496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属点阵多孔材料是一种具有复杂周期性结构的先进轻质多功能材料,由于其优异的比强度、吸声、降噪以及超材料等特性,近年来备受关注。而传统的制备工艺仅可以制造类点阵结构,难以生产复杂、精细的点阵结构,成为金属点阵多孔材料进一步应用的掣肘。近年来快速发展的增材制造(Additive manufacturing, AM)技术具有设计与制造自由度大、快速制造任意复杂几何形状零件的特点,可对金属点阵多孔材料进行微观、界观和宏观尺度晶格的多种组合进行调控,是金属点阵多孔材料制备技术的前沿。然而,增材制造金属点阵多孔材料存在残余应力大、表面粗糙度高以及局部应力集中等问题,导致其压缩脆性以及疲劳强度较低。因此,除了研究增材制造工艺参数对点阵结构性能的影响外,研究者们主要从拓扑优化以及后处理方面不断进行尝试,并获得了丰硕的成果。结合拓扑优化设计,可使得应力分布更均匀,更好地服役于不同的加载环境;梯度点阵结构的压缩强度以及能量吸收是均匀点阵结构的两倍以上;通过热处理以及化学蚀刻可以降低点阵结构的残余应力和表面粗糙度,大幅提高其点阵结构的疲劳强度。通过控制单胞结构的分级孔隙度分布、合适的后处理,有望同时实现高孔隙率、高疲劳强度和高能量吸收。本文首先陈述了增材制造金属点阵多孔材料的优势和成形准则,随后介绍了单胞形状、单胞尺寸、支柱直径、体积孔隙率等因素对点阵结构尺寸精度和表面粗糙度的影响,并归纳了这些因素对点阵结构的屈服强度、能量吸收率和疲劳强度等性能的影响。此外,总结了点阵结构的拓扑优化和后处理对其性能的影响,最后介绍了增材制造金属点阵结构存在的掣肘,并展望了其未来的研究趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨鑫
马文君
王岩
刘世锋
张兆洋
王婉琳
王犇
汤慧萍
关键词:  金属点阵多孔材料  增材制造  成形准则  能量吸收特性    
Abstract: Metal lattice porous materials are advanced lightweight and multifunctional materials with complex periodic structure. Due to its excellent specific strength, sound absorption, noise reduction and metamaterials, they has attracted much attention in recent years. These characteristics make the metal lattice porous materials have a wide range of applications in the fields of medical implantation and aerospace. At the same time, the traditional preparation process can only manufacture lattice-like structures, and has many defects, making them difficult to produce complex and fine lattice structures, making the application of metal lattice porous materials encounter a bottleneck. In recent years, the rapid development of additive manufacturing (AM) technology has the characteristics of large design, manufacturing freedom and rapid manufacturing of any complex geometric parts. It is the forefront of metal lattice porous materials preparation technology to regulate and control multiple combinations of grids. However, the additive manufacturing of metal lattice porous materials have problems such as large residual stress, high surface roughness, and local stress concentration, which result in low compression brittleness and low fatigue strength. Therefore, in recent years, in addition to studying the effects of additive manufacturing process parameters on the performance of lattice structures, researchers have continued to try from the perspective of topology optimization and post-processing, and have achieved fruitful results. Combined with topology optimization design, it can make the stress distribution more uniform and better serve in different loading environments; the compressive strength and energy absorption of the gradient lattice structure are more than twice that of the uniform lattice structure; it can be reduced by heat treatment and chemical etching. The residual stress and surface roughness of the lattice structure greatly increase the fatigue strength of the lattice structure. By controlling the hierarchical porosity distribution of the unit cell structure and appropriate post-treatment, it is expected to achieve high porosity, high fatigue strength and high energy absorption at the same time. This article first states the advantages and forming criteria of additively manufactured metal lattice porous materials, and then introduces the influence of the unit cell shape, unit cell size, pillar diameter, volume porosity and other factors on the lattice structure dimensional accuracy and surface roughness. And summarized the influence of these factors on the yield strength, energy absorption rate and fatigue strength of the lattice structure. In addition, the effects of topology optimization and post-processing of the lattice structure on its performance are summarized. Finally, the obstacles of the metal lattice structure of additive manufacturing are introduced, and the future research trends are prospected.
Key words:  metal lattice porous materials    additive manufacturing    forming criteria    energy absorption characteristics
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TB3  
基金资助: 国家自然科学基金(51671152;51874225);陕西省教育厅服务地方专项计划项目;金属多孔材料国家重点实验室资助
作者简介:  杨鑫,西安理工大学材料学院副教授、硕士研究生导师。2008年7月在陕西科技大学材料科学与工程学院取得硕士学位,2012年在中南大学粉末冶金研究院取得博士学位。于2013年进入西安理工大学,主要从事球形金属钛合金粉末及不锈钢粉末研发、金属粉床增材制造技术及表面改性、金属多孔材料的制备和功能化应用等方面的研究工作。近年来,在金属粉床增材制造领域发表论文30余篇,其中SCI 15篇。
刘世峰,西安建筑科技大学冶金工程学院教授、博士研究生导师。2007年在西安建筑科技大学材料加工专业取得硕士学位,2014年在西安建筑科技大学材料学院(与西北有色金属研究院联合培养)取得博士学位。于2001年进入西安建筑科技大学,主要研究方向包括:钛及钛合金、高熵合金、硬质合金、特种钢等金属3D打印粉末原材料设计、成形设备制备、材料工艺及性能研究;粉末冶金新材料;稀有金属材料加工新工艺、新方法;文物修复3D打印。近年来,在3D打印领域发表论文50余篇,出版编著1部。
引用本文:    
杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
YANG Xin, MA Wenjun, WANG Yan, LIU Shifeng, ZHANG Zhaoyang, WANG Wanlin, WANG Ben, TANG Huiping. Research Progress of Metal Lattice Porous Materials for Additive Manufacturing. Materials Reports, 2021, 35(7): 7114-7120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110208  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7114
1 Tyumentsev A N, Ditenberg I A, Korotaev A D, et al. Physical Mesomechanics, 2013, 16(4),319.
2 Liu P S. Rare Metal Materials and Engineering, 2007, 36,535.
3 Silva A R D, Mareze P, Eric Brandão. The Journal of the Acoustical Society of America, 2014, 136(4),2141.
4 Atia Abdelmalek, Mohammedi Kamal. Journal of Control Science and Engineering, 2015, 3(2),102.
5 Choudhuri D, Shukla S, Gwalani B, et al. Materials Research Letters, 2019, 7(1),40.
6 Chattopadhyay A, Pattamatta A. International Journal of Heat and Mass Transfer, 2014, 72,479.
7 Bruno Jetté, Brailovski V, Simoneau C, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 77,539.
8 Pollack J, Singh A. Quantum Studies: Mathematics and Foundations, 2019, 6(2),181.
9 Chougrani L, Pernot J P, Véron Philippe, et al. Computer-Aided Design, 2017, 90,95.
10 Zhan Z. Theoretical and Applied Fracture Mechanics, 2018, 96,114.
11 Gong H, Rafi K, Gu H, et al. Additive Manufacturing, 2014, 1-4,87.
12 Zhu Y Y, Chen B, Tang H B, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(1),36.
13 Niang Y R, Wu Y J, Zhou J, et al. Metallic Functional Materials, 2012(1),63(in Chinese).
梁永仁, 吴引江, 周济, 等. 金属功能材料, 2012(1),63.
14 Zeng S, Zhu R, Jiang W, et al. Materials Reports A:Review Papers, 2012(5),18(in Chinese).
曾嵩, 朱荣, 姜炜, 等. 材料导报:综述篇, 2012(5),18.
15 Shu S L, Rao Q H, He Y H, et al. Rare Metal Materials and Enginee-ring, 2014,43(5),1258 (in Chinese).
苏淑兰,饶秋华,贺跃辉,等. 稀有金属材料与工程,2014,43(5),1258.
16 Li B, He L, Li J, et al. Molecules, 2019, 24(3),552.
17 Hussein A, Hao L, Yan C, et al. Journal of Materials Processing Technology, 2013, 213(7),1019.
18 Challis V J, Xu X, Zhang L C, et al. Materials and Design, 2014, 63(2),783.
19 Holzweissig M J, Taube A, Brenne F, et al. Metallurgical and Materials Transactions B, 2015, 46(2),545.
20 Manish Sharma, Henrik Dobbelstein, Magnus Thiele, et al. Procedia CIRP,2018, 74,218.
21 Zhang X Z, Leary M, Tang H P, et al. Current Opinion in Solid State and Materials Science, 2018, 22,75.
22 Liu S, Shin Y C. Materials & Design, 2017, 136,185.
23 Behandish M, Mirzendehdel A M, Nelaturi S. Computer-Aided Design, 2019, 115,206.
24 Chen L, Jan I, Philip C, et al. International Journal of Mechanical Sciences, 2018, 145,9.
25 Leicht A, Klement U, Hryha E. Materials Characterization, 2018, 143,137.
26 Javidani M, Arreguin-Zavala J, Danovitch J, et al. Journal of Thermal Spray Technology, 2017,26(4),587.
27 Wang Y, Zhang L, Daynes S, et al. Materials & Design, 2018, 142,114.
28 Mazur M, Leary M, Sun S, et al. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8),1391.
29 Zhang X Z, Tang H P, Leary M, et al. JOM, 2018, 70,1870.
30 Rehme O, Emmelmann C. Proc SPIE, 2006, 6107,192.
31 Yan C, Hao L, Hussein A, et al. Journal of Materials Processing Technology, 2014, 214(4),856.
32 Buchbinder D, Schleifenbaum H, Heidrich S, et al. Physics Procedia, 2011, 12(part-PA),271.
33 Louvis E, Fox P, Sutcliffe C J. Journal of Materials Processing Technology, 2011, 211(2),275.
34 Kadirgama K, Harun W S W, Tarlochan F, et al. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4),1.
35 Sindhura G, Mageshwari K, Eric J Faierson, et al. Materials Science and Engineering: A,2019,745,231.
36 Ramirez D A, Murr L E, Li S J, et al. Materials Science and Enginee-ring: A, 2011, 528(16-17),5379.
37 Alsalla H, Hao L, Smith C. Materials Science and Engineering: A, 2016, 669,1.
38 Patrick Köhnen, Christian Haase, Jan Bültmann, et al. Materials & Design, 2018, 145,205.
39 Yang K, Wang J, Jia L, et al. Journal of Materials Science & Technology, 2018, 35(2),303.
40 Charlotte de Formanoir, Mathieu Suard, Rémy Dedievel, et al. Additive Manufacturing, 2016,11,71.
41 Bai L, Xiong F, Chen X H, et al. Journal of Mechanical Engineering,2018,54(5),156 (in Chinese).
柏龙,熊飞,陈晓红,等.机械工程学报,2018,54(5),156.
42 Challis V J, Xu X, Zhang L C, et al. Materials and Design, 2014, 63(2),783.
43 Ren Dechun, Li Shujun, Wang Hao, et al. Journal of Materials Science & Technology, 2019,35(2),285.
44 Mazur M, Leary M, Sun S, et al. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8),1391.
45 Al-Saedi D S J, Masood S H, Faizan-Ur-Rab M, et al. Materials & Design, 2018, 144,32.
46 Xiao Zefeng, Yang Yongqiang, Xiao Ran, et al. Materials & Design,2018, 143, 27.
[1] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[2] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[3] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[4] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[5] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[6] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1): 280-282.
[7] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[8] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[9] 张金田, 王杏华, 王涛, 马晓蕾, 杨海欧. 电弧增材制造单道单层工艺特性研究[J]. 材料导报, 2020, 34(24): 24132-24137.
[10] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[11] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[12] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[13] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[14] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[15] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed