Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 15-19    https://doi.org/10.11896/j.issn.1005-023X.2017.024.004
  第一届先进胶凝材料研究与应用学术会议 |
响应面方法优化碱激发矿渣-石粉水泥砂浆的研究
张兰芳,刘丽娜,曹 胜
重庆交通大学材料科学与工程学院,重庆 400074
Optimization of Alkali Activated Slag-Limestone Powder Mortar by Response Surface Methodology
ZHANG Lanfang, LIU Lina, CAO Sheng
College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074
下载:  全 文 ( PDF ) ( 2313KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于响应面中的中心复合试验法,选择碱含量和石灰石粉含量作为配合比变量,制备碱激发矿渣-石粉水泥砂浆,并研究其不同龄期的力学强度。通过数据处理得到各变量与抗折、抗压强度的响应曲面,分析了各变量对碱激发矿渣-石灰石粉水泥砂浆强度的影响规律,建立了各龄期强度的响应面模型,为现场不同龄期的砂浆强度预测提供了科学的方法。结果表明,当Na2O含量为8.27%(质量分数,下同)、石灰石粉含量为14.02%时,各组分能充分发挥协同作用,保证良好的力学性能,且响应面法是一种有效优化碱激发水泥砂浆组分的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张兰芳
刘丽娜
曹 胜
关键词:  响应面法  碱激发  矿渣  石灰石粉  强度    
Abstract: Based on the central composite experimental method of response surface methodology, the alkali activated slag-limestone powder cement mortar was prepared by choosing alkali content and limestone powder content as variables, and the mechanical strength of different age was studied. The response surface of relation between each variable and the flexural, compressive strength was obtained through data processing. And the effects of various variables on strength of alkali activated slag-limestone powder cement mortar were analyzed. The response surface model of strength was established, and it can serve as a scientific method for predicting the strength of mortar at different ages in the field. The optimized results showed that when the Na2O content is 8.27% and limestone powder content is 14.02%, the components can exert synergistic effect and ensure good mechanical properties. Therefore, the response surface methodology is an effective optimization method for alkali activated cement mortar.
Key words:  response surface methodology    alkali activation    slag    limestone powder    strength
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU502.6  
基金资助: 国家自然科学基金青年基金(51502029);重庆市科委基础科学与前沿技术研究项目(cstc2017jcyjAX0417);重庆交通大学山区道路建设与技术维护重点实验室开放基金项目(cqmrcmlab07-04)
作者简介:  张兰芳:女,1976年生,博士,副教授,主要从事碱激发胶凝材料方面的研究 E-mail:yyzhanglf@163.com
引用本文:    
张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
ZHANG Lanfang, LIU Lina, CAO Sheng. Optimization of Alkali Activated Slag-Limestone Powder Mortar by Response Surface Methodology. Materials Reports, 2017, 31(24): 15-19.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.004  或          http://www.mater-rep.com/CN/Y2017/V31/I24/15
1 Purdon A O. The action of alkalis on blast-furnace slag[J].J Soc Chem Ind, 1940,59:191.
2 Rostami M, Behfarnia K. The effect of silica fume on durability of alkali activated slag concrete[J]. Constr Build Mater, 2017,134:262.
3 Serdar Aydn. A ternary optimisation of mineral additives of alkali activated cement mortars[J]. Constr Build Mater, 2013,43(3):131.
4 Lee N K, Lee H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Constr Build Mater, 2013,47(5):1201.
5 Luo Xin, Xu Jinyu, Bai Erlei, et al. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system[J]. Constr Build Mater, 2012,29:482.
6 Vlcˇek V, Tomkova V, Babkova P, et al. Alkali-activated composites based on slags from iron and steel metallurgy[J]. Metalurgija, 2009,48(4):223.
7 Zhang Lanfang. Study on performance of alkali-activated waste residue (AAW) concrete[D]. Chongqing: Chongqing University, 2006(in Chinese).
张兰芳. 复合渣体(AAW)混凝土的性能研究[D]. 重庆:重庆大学, 2006.
8 Provis J L, Palomo A, Shi C. Advances in understanding alkali-activated materials[J]. Cem Concr Res, 2015,78:110.
9 Ding Yao, Dai Jianguo, Shi Caijun. Mechanical properties of alkali-activated concrete: A state-of-the-art review[J]. Constr Build Mater, 2016,127:689.
10Gao Yuan, Xu Jinyu, Zhang Guoxi, et al. Response surface on early performance of alkali-activated slag binder[J]. J Build Mater, 2016,19(2):209(in Chinese).
高原,许金余,张国喜,等.矿渣碱激发胶凝材料早期性能的响应曲面研究[J].建筑材料学报,2016,19(2):209.
11Kang Suk-Pyo, Kwon Seung-Jun. Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar[J]. Constr Build Mater, 2017,133:459.
12Atis C D, Bilim C, elik , et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar[J]. Constr Build Mater, 2009,23(1):548.
13Zhang Lanfang, Zhang Yong, Cao Sheng. Study on properties of alkali-activated slag-limestone powder mortar[J]. China Concr Cem Products, 2016(11):6(in Chinese).
张兰芳,张永,曹胜.碱激发矿渣-石灰石粉砂浆的性能研究[J].混凝土与水泥制品,2016(11):6.
14徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M]. 北京: 科学出版社,2010.
15Niyazi Ugur Kockal, Turan Ozturan. Optimization of properties of fly ash aggregates for high-strength lightweight concrete production[J]. Mater Des, 2011,32:3586.
[1] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[5] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[6] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[7] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[8] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[9] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[10] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[11] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[12] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[13] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[14] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[15] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed