Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23120053-5    https://doi.org/10.11896/cldb.23120053
  金属与金属基复合材料 |
活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响
刘元昊1, 任昌敬2, 向彦君2, 岳仕麒1, 倪昱1,3,*, 张鹏贤1,3, 黄勇1,3, 黄健康1,3
1 兰州理工大学材料科学与工程学院, 兰州 730050
2 西安航天发动机有限公司, 西安 710021
3 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Influence of Activator on the Penetration Depth, Arc Morphology, Microstructure and Properties of A-TIG Joints
LIU Yuanhao1, REN Changjing2, XIANG Yanjun2, YUE Shiqi1, NI Yu1,3,*, ZHANG Pengxian1,3, HUANG Yong1,3, HUANG Jiankang1,3
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Xi'an Space Engine Company Limited, Xi'an 710021, China
3 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 26207KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选用10 mm厚1Cr21Ni5Ti不锈钢为研究对象,通过优化活性剂配比及工艺参数获得具有最大熔深的焊缝,并研究了活性剂对活性剂钨极惰性气体保护焊(A-TIG)电弧形貌及接头组织性能的影响。与传统钨极惰性气体保护焊(TIG)所得接头相比,A-TIG所得接头熔深增大了122%,电弧发生明显的收缩,焊缝组织细化,奥氏体含量增多,热影响区明显变窄。采用A-TIG所得接头抗拉强度高达702 MPa,比TIG焊接头强度提高了53.9%,相当于母材的96.8%,其接头断裂在焊缝中心处,主要是氧化物活性剂的加入而形成夹渣所致,断裂模式表现为韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘元昊
任昌敬
向彦君
岳仕麒
倪昱
张鹏贤
黄勇
黄健康
关键词:  A-TIG  活性剂  熔深  强度  断裂    
Abstract: 1Cr21Ni5Ti stainless steel of 10 mm thick was selected as the research object, and the weld with the maximum penetration depth was obtained by optimizing the activator ratio and process parameters. The effect of activator on the arc morphology, microstructure and properties of A-TIG joints was studied. Compared to the joints obtained by traditional TIG, the joints obtained by A-TIG had a 122% increase in penetration depth, the arc undergoed significant contraction, the microstructure of the weld was refined, the content of austenite increased, and the width of heat affected zone significantly narrowed. The tensile strength of the joint obtained by A-TIG was as high as 702 MPa, which was 53.9% higher than the strength of the TIG joint, which was equivalent to 96.8% of the base metal. The joint failed in the center of the weld, which was caused by the addition of oxide activator, formed slag inclusions, and the fracture mode was ductile fracture.
Key words:  A-TIG    activator    penetration depth    strength    fracture
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TG444  
基金资助: 甘肃省科技重大专项(22ZD6GA008)
通讯作者:  *倪昱,兰州理工大学材料科学与工程学院副教授、博士、硕士研究生导师。目前主要从事异种金属连接、金属材料表面处理等方面的研究工作。niyu2008@163.com   
作者简介:  刘元昊,兰州理工大学材料科学与工程学院硕士研究生,在张鹏贤研究员、倪昱副教授的指导下进行研究。目前主要研究领域为异种金属连接。
引用本文:    
刘元昊, 任昌敬, 向彦君, 岳仕麒, 倪昱, 张鹏贤, 黄勇, 黄健康. 活性剂对A-TIG接头熔深、电弧形貌及组织性能的影响[J]. 材料导报, 2025, 39(1): 23120053-5.
LIU Yuanhao, REN Changjing, XIANG Yanjun, YUE Shiqi, NI Yu, ZHANG Pengxian, HUANG Yong, HUANG Jiankang. Influence of Activator on the Penetration Depth, Arc Morphology, Microstructure and Properties of A-TIG Joints. Materials Reports, 2025, 39(1): 23120053-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120053  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23120053
1 An L C, Cao J, Zhang T, et al. Materials and Corrosion, 2017, 68, 1116.
2 Soltani H M, Tayebi M. Journal of Alloys and Compounds, 2018, 767, 112.
3 Liu Z, Zhou X, Zhu T, et al. Materials Reports, 2021, 35(S2), 353 (in Chinese).
刘自刚, 周晓静, 朱婷婷, 等. 材料导报, 2021, 35(S2), 353.
4 Huang Y, Zhao W, Zhang L. Materials Reports, 2017, 31(22), 70 (in Chinese).
黄勇, 赵文强, 张利尧. 材料导报, 2017, 31(22), 70.
5 Zheng T, Chao Y, Zou L, et al. Ordnance Material Science and Engineering, 2018, 41( 4), 82 (in Chinese).
曾涛, 晁耀杰, 邹龙江, 等. 兵器材料科学与工程, 2018, 41(4), 82.
6 Ren Z, Yang C, Song Y, et al. Hot Working Technology, 2020, 49(23), 12 (in Chinese).
任泽良, 杨成刚, 宋友民, 等. 热加工工艺, 2020, 49(23), 12.
7 Zhu J, Li J, Yang C, et al. Journal of Netshape Forming Engineering, 2022, 14(10), 105 (in Chinese).
朱嘉文, 李佳, 杨成刚, 等. 精密成形工程, 2022, 14(10), 105.
8 Sheng X, Deng P, Li Y. Electric Welding Machine, 2015, 45(12), 32 (in Chinese).
沈向前, 邓鹏, 李耀辉. 电焊机, 2015, 45(12), 32.
9 Fu Y, Ren Z, Xiao Z, et al. Welding & Joining, 2020(4), 56 (in Chinese).
付彧, 任泽良, 肖中, 等. 焊接, 2020(4), 56.
10 Fan D, Liu Z, Huanng Y, et al. Transactions of the China Welding Institution, 2014, 35(4), 113 (in Chinese).
樊丁, 刘自刚, 黄勇, 等. 焊接学报, 2014, 35(4), 113.
11 Tseng K H, Chen K L. Journal of Nanoscience and Nanotechnology, 2012, 12(8), 6359.
12 Li C, Shi Y, Gu Y, et al. RSC Advances, 2017, 7(85), 53941.
13 Wu B. The effect of activator on the arc characteristics and weld performance of 309S stainless steel TIG welding. Master's Thesis, Southwest Petroleum University, China, 2016 (in Chinese).
武斌. 活性剂对309S不锈钢TIG焊电弧特性及焊缝性能的影响. 硕士学位论文, 西南石油大学, 2016.
14 Vidyarthy R S, Kulkarni A, Dwivedi D K. Materials Science and Engineering:A, 2017, 695, 249.
[1] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[4] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[5] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[6] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[7] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[8] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[9] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[10] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[11] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[12] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[13] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[14] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[15] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed