Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23120133-12    https://doi.org/10.11896/cldb.23120133
  无机非金属及其复合材料 |
机器学习算法用于水泥强度预测的研究进展
李自强1, 崔素萍1,*, 马忠诚2,3, 王亚丽1, 王晶2, 刘云2, 乔志杨1
1 北京工业大学材料科学与工程学院,北京 100124
2 中国建筑材料科学研究总院有限公司,北京 100024
3 中国建材集团有限公司,北京 100036
Research Progress of Machine Learning Algorithm for Cement Strength Prediction
LI Ziqiang1, CUI Suping1,*, MA Zhongcheng2,3, WANG Yali1, WANG Jing2, LIU Yun2, QIAO Zhiyang1
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
2 China Building Materials Academy Co., Ltd., Beijing 100024, China
3 China National Building Materials Group Corporation, Beijing 100036, China
下载:  全 文 ( PDF ) ( 34372KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥的强度是衡量其性能的重要指标之一,传统的基于人工定时采样测定的方法准确性好但存在较大的滞后性,不能及时调控水泥生产过程。机器学习可通过不同算法对水泥等流程工业的原料及产品检测数据、微观结构图像、工艺运行参数等多维生产数据进行有目标的关联分析,建立水泥强度预测模型,可以解决人工检测方法的滞后性问题。本文通过梳理常用算法的基本工作原理和优势,归纳基于机器学习的水泥强度预测模型,探讨其应用效果和发展方向,以期为水泥强度预测模型的进一步优化和在水泥工业中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李自强
崔素萍
马忠诚
王亚丽
王晶
刘云
乔志杨
关键词:  水泥强度  大数据分析  机器学习  预测模型    
Abstract: The strength of cement is one of the important indicators of its performance. The traditional strength detection method based on manual timed sampling has a good accuracy, but there is a large lag, which can not regulate the cement production process in time. Machine learning enables targeted correlation analysis of multi-dimensional production data in the cement industry, for example, raw material and product test data, microstructure images and process operating parameters. The lagging problem of manual testing methods can be solved by establishing a cement strength prediction model based on machine learning. This paper summarizes the cement strength prediction model based on machine learning by sorting out the basic working principles and advantages of commonly used algorithms, and discusses its application effect and development direction, with a view to providing guidance for further optimization of the cement strength prediction model and its application in the cement industry.
Key words:  cement strength    big data analysis    machine learning    prediction model
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TP181  
  TQ172  
基金资助: 中国建材集团原创技术策源地“揭榜挂帅”项目(2021YCJS01-4)
通讯作者:  *崔素萍,博士,北京工业大学材料科学与工程学院教授、博士研究生导师。目前主要从事高性能水泥、生态建筑材料、材料 LCA、环境材料等方面的研究工作。cuisuping@bjut.edu.cn   
作者简介:  李自强,现为北京工业大学材料科学与工程学院博士研究生,在崔素萍教授的指导下进行研究。目前主要研究领域为生态建筑材料。
引用本文:    
李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
LI Ziqiang, CUI Suping, MA Zhongcheng, WANG Yali, WANG Jing, LIU Yun, QIAO Zhiyang. Research Progress of Machine Learning Algorithm for Cement Strength Prediction. Materials Reports, 2025, 39(5): 23120133-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120133  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23120133
1 Liu C H. Popular Science,2013(6),173 (in Chinese).
刘聪慧. 科学大众(科学教育),2013(6),173.
2 Zou Z,Pan Y E. Journal of Applied Statistics and Management,1987,6(5),16 (in Chinese).
邹镇,潘一耳. 数理统计与管理,1987,6(5),16.
3 Huang Z Z. Popular Science & Technology,2009,11(11),56 (in Chinese).
黄志朝. 大众科技,2009,11(11),56.
4 Wang Y X. Engineering and Construction,2000,14(3),14 (in Chinese).
王元祥. 城建档案研究,2000,14(3),14.
5 Cai Z Y,Pan M H,Zhong X,et al. Concrete,1986(3),11 (in Chinese).
蔡正咏,潘敏豪,钟洵,等. 混凝土,1986(3),11.
6 Chen T S. Cement,1991(12),19 (in Chinese).
陈天石. 水泥,1991(12),19.
7 Agrawal A,Choudhary A. Applied Physics Letters Materials,2016,4(5),053208.
8 Long W J,Luo S Y,Cheng B Y,et al. Materials Reports,2024,38(11),1 (in Chinese).
龙武剑,罗盛禹,程博远,等. 材料导报, 2024,38(11),1.
9 Liu Y,Yang Z W,Yu Z Y,et al. Journal of Materiomics,2023,9(4),798.
10 Mahdavinejad M S,Rezvan M,Barekatain M,et al. Digital Communications And Networks,2018,4(3),161.
11 Murphy K P. Machine learning: a probabilistic perspective,Massachusetts Institute of Technology Press,USA,2012, pp.51.
12 Marshal S. Machine learning an algorithm perspective,Chemical & Rubber & Company Press,USA,2015, pp.99.
13 Liu Y,Zou X X,Yang Z W,et al. Journal of the Chinese Ceramic Society,2022,50(3),863(in Chinese).
刘悦,邹欣欣,杨正伟,等. 硅酸盐学报,2022,50(3),863.
14 Liu Y,Zou X X,Ma S C,et al. Acta Materialia,2022,238,118195.
15 Wang H W,Ye B,Feng J,et al. Materials China,2023,42(10),806(in Chinese).
王海伟,叶波,冯晶,等. 中国材料进展,2023,42(10),806.
16 Hu Y,Zhang S L,Zhou W H,et al. Journal of the Chinese Ceramic Society,2023,51(2),452 (in Chinese).
胡扬,张胜利,周文瀚,等. 硅酸盐学报,2023,51(2),452.
17 Gandomi A H,Roke D A. Advances In Engineering Software,2015,88,63.
18 Cortes C,Vapnik V. Machine Learning,1995,20(3),273.
19 Yin H H. Research of concrete performance on support vector machine. Master’s Thesis,Hunan University,2012 (in Chinese).
殷宏辉. 基于支持向量机的混凝土性能研究. 硕士学位论文,湖南大学,2012.
20 Qi H N. Computer Engineering,2004,30(10),6(in Chinese).
祁亨年. 计算机工程,2004,30(10),6.
21 Liu F Y,Wang S H,Zhang Y D. Computer Systems & Applications,2018,27(4),1(in Chinese).
刘方园,王水花,张煜东. 计算机系统应用,2018,27(4),1.
22 Drucker H,Surges C J C,Kaufman L,et al. Advances in Neural Information Processing Systems,1997,155.
23 Zadeh L A. Information and Control,1965,8(3),338.
24 Li Z. Research on predictive capability of a new Neuro-Fuzzy inference system-ANFIS on the tonnage supply and deliveries of world bulk fleet. Master’s Thesis,Dalian Maritime University,2000. (in Chinese)
李志. 模糊神经推理系统—ANFIS在散货船运力预测中的应用研究. 硕士学位论文,大连海事大学,2000.
25 Lu B,He H C. Computer Science,2003,30(10),40(in Chinese).
鲁斌,何华灿. 计算机科学,2003,30(10),40.
26 Jang J S R. IEEE Transactions on Systems Man Cybernetics-Systems,1993,23(3),665.
27 Zhou W B,Li N,Liu L,et al. Bulletin of Soil Water Conservation,2014,34(4),138(in Chinese).
周维博,李娜,刘雷,等. 水土保持通报,2014,34(4),138.
28 Anusree K,Varghese K O. Procedia Technology,2016,24,101.
29 You Y,Zhao P Z,Liu D,et al. Journal of University of Jinan(Science and Technology),2023,37(1),71 (in Chinese).
游溢,赵普志,刘冬,等. 济南大学学报(自然科学版),2023,37(1),71.
30 Kaloop M R,Bardhan A,Kardani N,et al. Renewable and Sustainable Energy Reviews,2021,148,111315.
31 Zhang S W,Xing Y Y,Lu J A,et al. Journal of Advanced Transportation,2019,2019,1.
32 Kumar A,Arora H C,Kumar K,et al. Expert Systems with Applications,2023,216,119497.
33 Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology,control,and artificial intelligence,Massachusetts Institute of Technology Press,USA,1992, pp.150.
34 Yu J K,Zhang W B,Lu Y C. Journal of Yunnan Minzu University(Natural Sciences Edition),2002,11(4),193(in Chinese).
余建坤,张文彬,陆玉昌. 云南民族学院学报(自然科学版),2002,11(4),193.
35 Koza J R. Genetic programming: on the programming of computers by means of natural selection,Massachusetts Institute of Technology Press,USA,1992.
36 Ferreira C. Complex Systems,2001,13(2),87.
37 Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence, Elsevier Press,NLD,2006, pp.203.
38 Iqbal M F,Liu Q F,Azim I,et al. Journal of Hazardous Materials,2020,384,121322.
39 Li K S,Lin L Q,Li J M,et al. International Journal of Cognitive Informatics and Natural Intelligence,2023,17(1),1.
40 Ebrahimi M,Sarikhani M R,Shiri J. Applied Soil Ecology, 2022,175,104465.
41 Si H Z,Wang T,Zhang K J,et al. Bioorganic & Medicinal Chemistry,2006,14(14),4834.
42 Zhang W F,Zhao Y,Dong Y,et al. Scientific and Technological Innovation,2021(20),39(in Chinese).
张文丰,赵月,董岳,等. 科学技术创新,2021(20),39.
43 Tan H,Zhu S R,Yan S L,et al. Applied Composite Materials,2023,30(3),1003.
44 Deng C B,Xue X H. Acta Materiae Compositae Sinica,2023,40(1),510(in Chinese).
邓楚兵,薛新华. 复合材料学报,2023,40(1),510.
45 Breiman L. Machine Learning,1996,24(2),123.
46 Schapire R E. In: 30th Annual Symposium On Foundations of Computer Science. Research Triangle Park,North Carolina,2002,pp.28.
47 Breiman L. Journal of Clinical Microbiology, 2001,2,199.
48 Wang Y S,Xia S T. Information and Communications Technologies,2018,12(1),49(in Chinese).
王奕森,夏树涛. 信息通信技术,2018,12(1),49.
49 Lin N,Zhang W C,Liu Y,et al. Chinese Journal of Underground Space and Engineering,2018,14(S1),357(in Chinese).
林楠,张文春,刘鹰,等. 地下空间与工程学报,2018,14(S1),357.
50 Chen T Q,Guestrin C. In: 22nd Acm Sigkdd International Conference on Knowledge Discovery And Data Mining (Kdd). San Francisco,2016,pp.785.
51 Ke G L,Meng Q,Wang T F,et al. In: 31st Annual Conference on Neural Information Processing Systems (Nips). Long Beach, 2017, pp.30.
52 Chen R B. A study on diagnosing prediction model of hypertension identified as overabundant liver-fire syndrome based on XGboost algorithm. Ph. D. Thesis,China Academy of Chinese Medical Sciences, China, 2018(in Chinese).
陈仁波. 基于XGboost算法的高血压病肝火亢盛证诊断预测模型研究. 博士学位论文,中国中医科学院,2018.
53 Yang H Z,Chen Z J,Yang H J,et al. IEEE Access,2023,11,23366.
54 Zhang S A,Zhu X,Anduv B,et al. Science and Technology for the Built Environment,2021,27(5),608.
55 Nemat Saberi A,Belahcen A,Sobra J,et al. IEEE Access,2022,10,81910.
56 Xiong S A,Liu Z X,Min C D,et al. Materials,2022,16(1),308.
57 Hao X C,Zhang Z P,Xu Q Q,et al. Chemometrics Intelligent Laboratory Systems,2022,220,104461.
58 Mcculloch W S,Pitts W. Bulletin of Mathematical Biophysics,1943,5(4),115.
59 Kewalramani M A,Gupta R. Automation in Construction,2006,15(3),374.
60 Özcan F,Ati C D,Karahan O,et al. Advances in Engineering Software,2009,40(9),856.
61 Uysal M,Tanyildizi H. Construction and Building Materials,2012,27(1),404.
62 Jin L B,Dong T Y,Fan T,et al. Materials Today Communications,2022,32,104137.
63 Tao Z L. The prediction and design of 2D chiral metamaterials based on artificial neural network. Master’s Thesis,National University of Defense Technology, China, 2020(in Chinese).
陶梓隆. 基于人工神经网络算法的二维手性超材料的预测与设计. 硕士学位论文,国防科技大学,2020.
64 Montúfar G,Pascanu R,Cho K,et al. In: 27th International Conference on Neural Information Processing Systems. Montreal,2014,pp.2924.
65 Chen X C. Research on algorithm and application of deep learning based on convolutional neural network. Master’s Thesis,Zhejiang Gongshang University, China, 2014(in Chinese).
陈先昌. 基于卷积神经网络的深度学习算法与应用研究. 硕士学位论文,浙江工商大学,2014.
66 Lecun Y,Boser B,Denker J S,et al. Neural Computation,1989,1(4),541.
67 Zhou Z H. Machine learning,Tsinghua University Press,China,2016(in Chinese).
周志华. 机器学习,清华大学出版社,2016.
68 Gu J,Wang Z,Kuen J,et al. Pattern Recognition, 2018,77,354.
69 Schmidhuber J. Neural Networks, 2015,61,85.
70 Hinton G E,Osindero S,Teh Y W. Neural Computation,2006,18(7),1527.
71 Wang L,Yang B,Wang S D,et al. IEEE Transactions on Evolutionary Computation,2015,19(5),679.
72 Ma Q X. Highways & Automotive Applications,2009,(3),93(in Chinese).
马清秀. 公路与汽运,2009,(3),93.
73 Verma M,Thirumalaiselvi A,Rajasankar J. Neural Computing & Applications,2017,28(1),1083.
74 Akkurt S,Tayfur G,Can S. Cement and Concrete Research,2004,34(8),1429.
75 Gao F L. Journal of Shanghai University (Natural Science),1996(2),229(in Chinese).
高法良. 上海大学学报(自然科学版),1996(2),229.
76 Gao F L. Cement and Concrete Research,1997,27(6),883.
77 Gao F L. China Building Materials Science & Technology,1996,5(1),24(in Chinese).
高法良. 中国建材科技,1996,5(1),24.
78 Gkountakou F,Papadopoulos B. Symmetry,2020,12(8),1295.
79 Sevim U K,Bilgic H H,Cansiz O F,et al. Construction and Building Materials,2021,271,121584.
80 Naderloo L,Alimardani R,Omid M,et al. Measurement,2012,45(6),1406.
81 Cui X Y,Chen Y H,Shi K F,et al. Journal of Shandong Institute of Building Materials,1998,12(3),275(in Chinese).
崔秀云,陈月辉,史奎凡,等. 山东建材学院学报,1998,12(3),275.
82 Li X D,Yang B,Dong J W. Computer Engineering ang Applications,2004,40(12),205(in Chinese).
李晓东,杨波,董吉文. 计算机工程与应用,2004,40(12),205.
83 Baykasolu A,Dereli T,Tanğ S. Cement and Concrete Research,2004,34(11),2083.
84 Thamma P,Barai S V. In: Applications of soft computing. Berlin,Heidelberg: Springer,2009,pp.203.
85 Wang J Z,Ni H G. Journal of the Chinese Ceramic Society,1999,27(4),408(in Chinese).
王继宗,倪宏光. 硅酸盐学报,1999,27(4),408.
86 Akkurt S,Ozdemir S,Tayfur G,et al. Cement and Concrete Research,2003,33(7),973.
87 Wang H,Zhang Z G,Li H B,et al. Automation & Instrumentation,2004,19(2),7(in Chinese).
王欢,张增光,李海滨,等. 自动化与仪表,2004,19(2),7.
88 Dong J W,Chen Y H,Yuan R Z,et al. Journal of Shandong Jianzhu University,2005,20(1),1(in Chinese).
董吉文,陈月辉,袁润章,等. 山东建筑大学学报,2005,20(1),1.
89 Xu H,Xia H. Journal of Mathematics for Technology,2000,16(2),24(in Chinese).
徐辉,夏虹. 工科数学,2000,16(2),24.
90 Hu C L. Prediction of cement strength based on principal components wavelet neural network. Master’s Thesis,Jingdezhen Ceramic University, China, 2011(in Chinese).
胡春来. 基于主成分小波神经网络的水泥强度预测研究. 硕士学位论文,景德镇陶瓷大学,2011.
91 Relis M,Ledbetter W B,Harris P. Cement and Concrete Research,1988,18(5),674.
92 Tsamatsoulis D. Journal of the Mechanical Behavior of Materials,2012,21(3),81.
93 Tsamatsoulis D. In: International Conference on Mathematics and Computers in Sciences and Industry(MCSI ’14). USA,2014,pp.75.
94 Tsamatsoulis D. In: 18th International Conference on Circuits,Systems,Communications and Computers. Santorini Island,Greece,2014,pp.138.
95 Tsamatsoulis D. International Journal of Materials,2015,2,203600834.
96 Tsamatsoulis D. Chemical and Biochemical Engineering Quarterly,2016,30(2),161.
97 Tsamatsoulis D. Chemical and Biochemical Engineering Quarterly,2021,(3),239463457.
98 Guo Y J,Chen P J,Zhao L,et al. Journal of Nantong University(Natural Science Edition),2016,15(2),7(in Chinese).
郭一军,陈佩军,赵磊,等. 南通大学学报(自然科学版),2016,15(2),7.
99 Guo Y J,Zhao N S,Zhao L. Journal of Huaibei Normal University(Natural Science),2017,38(2),60(in Chinese).
郭一军,赵年顺,赵磊. 淮北师范大学学报(自然科学版),2017,38(2),60.
100 Zhou Y. Prediction model of cement strength based on non-linear neural network. Master’s Thesis,Jingdezhen Ceramic University,2010(in Chinese).
周勇. 基于非线性主成分神经网络的水泥强度预测研究. 硕士学位论文,景德镇陶瓷大学,2010.
101 Qiu G H,ShenTu N Y,Shi Z L. Science & Technology Review,2014,32(3),56(in Chinese).
裘国华,申屠南瑛,施正伦. 科技导报,2014,32(3),56.
102 Ren H,Li J L. Control and Instruments in Chemical Industry,2017,44(10),925(in Chinese).
任宏,李俊丽. 化工自动化及仪表,2017,44(10),925.
103 Yu S L,Gao H. Journal of Hefei University of Technology(Natural Science),2002,25(2),316(in Chinese).
郁时炼,高辉. 合肥工业大学学报(自然科学版),2002,25(2),316.
104 Guo Y J. Study on prediction model of cement strength based on artificial neural network. Master’s Thesis,Kunming University of Science and Technology,2006(in Chinese).
郭一军. 基于人工神经网络的水泥强度预测模型研究. 硕士学位论文,昆明理工大学,2006.
105 Cheng Y H,Zhao W. Journal of Northeastern University(Natural Science),2006,27(1),92(in Chinese).
程云虹,赵文. 东北大学学报,2006,27(1),92.
106 Chao H,Bai M L. China Homes,2012(2),103. (in Chinese)
朝晖,白梅力. 中华民居,2012(2),103.
107 Li X D. Research on cement strength prediction model based on digital image processing. Master’s Thesis. University of Jinan, China, 2004 (in Chinese).
李晓东. 基于数字图像处理的水泥强度预测模型研究. 硕士学位论文,济南大学,2004.
108 Onal O,Ozturk A U. Advances In Engineering Software,2010,41(2),165.
109 Li M H,Bo Y,Lin W,et al. In: 3rd International Conference on Informative And Cybernetics for Computational Social Systems (ICCSS). Jinzhou,2016,pp.103.
110 Kong F H. In: International Conference on Machine Learning and Cybernetics. Baoding,2009,pp.2228.
111 Hamit Murat, Zhou J J, Yan C B, et al. Scientific Technical Review, 2012, 30(6), 66. (in Chinese)
木拉提·哈米提, 周晶晶, 严传波, 等. 科技导报, 2012, 30(6), 66.
112 Manivannan K,Aggarwal P,Devabhaktuni V,et al. Journal of Hazardous Materials,2012,223,94.
113 Haralick R M,Shanmugam K,Dinstein I. IEEE Transactions on Systems Man Cybernetics-Systems,1973,3(6),610.
114 Liu Y,Yang Z W,Zou X X,et al. National Science Review,2023,10(7),125.
115 Chen C L P,Liu Z L. IEEE Transactions on Neural Networks and Learning Systems,2018,29(1),10.
116 Li M H,Wang L,Yang B,et al. In: IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu,USA,2018,pp.1.
117 Qi L,Yang B,Wang L,et al. Journal of Shandong University: Science Edition,2010,45(11),16.
118 Fan L L,Zhao H W,Zhao H Y,et al. Optics and Precision Engineering,2020,28(5),1152 (in Chinese).
范丽丽,赵宏伟,赵浩宇,等. 光学精密工程,2020,28(5),1152.
119 Elbaz K,Shaban W M,Zhou A N,et al. Chemosphere,2023,333,138867.
120 Zhang Q,Huo T T,Miao H D,et al. Modern Information Technology,2023,7(19),151(in Chinese).
张庆,霍婷婷,苗海东,等. 现代信息科技,2023,7(19),151.
121 Sheri A M,Rafique A,Pedrycz W,et al. Engineering Applications of Artificial Intelligence,2015,37,336.
122 Guo J F,Li M H,Wang L,et al. Engineering Applications of Artificial Intelligence,2020,88,103378.
123 Scarselli F,Gori M,Tsoi A C,et al. IEEE Transactions on Neural Networks and Learning Systems,2009,20(1),61.
124 Krizhevsky A,Sutskever I,Hinton G E. In: 25th International Confe-rence on Neural Information Processing Systems. New York,2012,pp.1097.
125 Oh S K,Kim W D,Pedrycz W,et al. Fuzzy Sets and Systems,2011, 163(1), 54.
126 Huang Z F, Gou Z H. Journal of Building Engineering, 2023, 72, 106653.
127 Zhang L L, Oh S K, Pedrycz W, et al. Applied Soft Computing, 2021, 112, 107766.
[1] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[4] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[7] 王博, 盛鹏, 徐丽, 李圣驿, 白会涛, 李慧, 薛晴. 材料基因工程技术在电工材料研发中的应用与展望[J]. 材料导报, 2024, 38(13): 23020098-17.
[8] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[9] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[10] 龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
[11] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[12] 王世杰, 杨杰, 马硕, 韩硕, 王龙, 段国林. 机器学习在功能梯度材料设计-制备中的应用综述[J]. 材料导报, 2023, 37(21): 22030237-9.
[13] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[14] 余春秀, 王云凯, 贺子娟, 李玮, 陈家林, 李世鸿, 李俊鹏. 电子封装用环氧胶粘剂改性研究进展[J]. 材料导报, 2023, 37(15): 21120084-10.
[15] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed